The purpose of this study is to examine the determinants of management performance in the remaining offshore fishing industry after the resource management-oriented fisheries structure improvement policy by the fisheries vessel buy-back program and Total Allowable Catch (TAC). The results of the analysis of the determinants of management performance of offshore fishing can be summarized as follows. First, based on the management performance determinant model of offshore fishing, it is confirmed that the government's resource-managed fishing structure improvement policy, such as the fishing boat reduction project and the TAC policy, is improving the management performance of the resource-managed remaining fishing boat. Second, looking at the specific management performance determinants based on the management performance model of offshore fishing, the leverage ratio (TLTA), which is the total debt ratio, shows a statistically significant positive (+) relationship with management performance, which increases management performance directly proportional to the leverage ratio. The increase in the leverage ratio (total debt ratio) was expected to lead to a high interest cost burden, resulting in a reverse (-) financial leverage effect; however, rather a positive (+) financial leverage effect occurred with a high profit covering interest costs. The total catch (TCATCH) has a positive (+) relationship with management performance at a statistical significance level of less than 1%, indicating that an increase in catch is improving or increasing the management performance of fishing companies. The selling price (UPRICE) shows a positive (+) relationship with management performance at a very high statistical significance level of less than 1%, and it can be seen that high fishing prices are a major factor in improving or increasing the management performance of offshore fishing. On the other hand, fishing vessel tonnage (TON), fishing vessel horsepower (RHP), and operating days (WDAYS), which indicate have a statistically significant negative (-) relationship with management performance, which deviates from the existing fisheries common sense that the size of fishing vessel tonnage and fishing vessel horsepower and the increase in the number of operating days is proportional to management performance. As a result of the increase in fishing vessel tonnage, horsepower, and the number of operating days, it was confirmed that the higher the fishing cost, such as oil costs, is worsening the management performance of fishing companies. Participation in TAC has a statistically significant positive (+) value with management performance, indicating that the remaining offshore fishing companies participating in TAC are improving or increasing management performance compared to offshore fishing companies that do not. Third, there are conflicting results depending on the industry as a result of estimating the management performance determinants of offshore fishing by TAC participation, and TAC participation had a negative impact on management performance in anchovy boat seine and southern west sea bottom trawl in fishing industry while TAC participation had a positive impact on management performance in large stow nets on anchor in fishing industry.
우리나라는 수출주도형 경제구조를 지니고 있어 세계 무역질서에 능동적으로 대 응할 필요가 있다. 중국의 G2 부상에 따라 미국은 중국을 견제하는 데 외교적 역량을 집중하고 있으며, 이는 지역 질서의 분절화 ․ 진영화로 나타나고 있다. 이러한 진 영화는 역내포괄적동반자협정(Regional Comprehensive Economic Partnership Agreement, RCEP), 포괄적 ․ 점진적환태평양경제동반자협정(Comprehensive and Progressive Agreement for Trans-Pacific Partnership, CPTPP), 인도태평양경 제프레임워크(Indo-Pacific Economic Framework, IPEF) 등 자유무역협정(FTA) 에서 본격화되고 있다. 우리나라의 통상정책은 중국이 주도하는 FTA인 RCEP에 가입한 이후 일본이 주 도하는 FTA인 CPTPP에 가입할 것인가? 그리고 미국이 주도하는 경제통상플랫폼 인 IPEF에 어느 분야에 참여할 것인가 하는 것이 당면한 과제가 되고 있다. 이러한 문제점을 인식하여 본 논문에서는 RCEP, CPTPP 및 IPEF의 효율적 추진 을 위해 그동안 추진되어왔던 통상정책의 방향 및 성과를 알아보고 RCEP, CPTPP 및 IPEF의 내용과 함께 추진 성과 제고를 위한 해양 ․ 수산분야의 환경조성 및 과제 를 알아보고자 한다.
본 연구는 델파이 기법 및 전문가 설문을 통해 지역별 교육인프라 격차가 심한 해양수산안전분야의 교육시설을 설립하기 전 평가해야 하는 항목과 지표를 도출하였다. 그 결과 지리적요인, 사회적요인, 행정적요인에서 고려해야 하는 7개의 지표를 선정하였다. 각 지표를 객관적으로 평가하기 위해 ‘국가균형발전종합정보시스템’, ‘국가통계포털’ 등에 공표된 자료를 활용하여 평가할 수 있도록 평가지 표를 개발하였다. 각 지표별 가중치 선정을 위해 계층분석(AHP) 방식을 적용하였으며 AHP분석 결과, 해양수산안전 교육시설 입지선정에 가장 중요한 영향을 미치는 10가지 요인은 해기사 분포, 고속․고속화철도 접근성, 5톤미만 소형선박 수, 고속도로 IC접근성, 어선세력 분 포, 관련산업 밀접도, 신항만 예정지, 무역항 분포, 해양레저승선인원 수, 지자체의 토지장기무상임대 가능여부 순으로 나타났다. 본 연구 에서 개발한 해양수산안전교육시설의 입지평가 지표는 국가 공공데이터를 활용하여 각 지역별로 평가할 수 있는 지표로 객관적인 평가 가 가능한 장점을 가지고 있다. 따라서 본 평가지표는 해양수산안전 교육시설 뿐만아니라 다른 해양 관련 시설 설치 타당성을 검증하는 데에도 활용 할 수 있을 것으로 판단된다.
진해만은 우리나라 남해 연안의 주요 어장으로서, 여전히 전체 수산생산량에서 적지 않은 기여를 창출하고 있다. 그러나, 수십 년간 산업개발과 고수온과 같은 환경변화로 인하여 진해만의 해양생태계는 과거와 달라지고 있다. 본 연구는 2005년부터 2022년 까지 진해만 연안 5개 시군구의 수산생산량, 폐기량, 평균영양단계 및 어업균형지수를 분석하였으며, ARIMA 모델을 이용하여 2027년까 지 단기적인 변동 추세를 함께 관찰하였다. 그 결과, 고성지역은 2027년까지 지속적으로 수산생산량이 감소할 것으로 예측되었다. 통영 지역은 이매패류의 부산물 처리가 필요한 것으로 평가된다. 해양생태계 지표의 경우, 통영지역에서는 대형 어류 생산 비중이 회복되고, 어업균형지수가 0 이상을 나타내어 해양생태계 구조가 안정적인 것으로 나타났다. 마지막으로 IPCC의 기후변화 시나리오에 따라 2060 년까지 진해만의 부어성 어종 6종의 생산량 변동 추이를 비교하였으며, 2020년대 초반 2만 ton 부근까지 감소했던 생산량은 2020년대와 2040년대에 4만 ton 부근 가까이 회복한 후, 2060년까지 점진적인 감소 경향을 나타내는 것으로 예측되었다.
In this study, the effect of Distribution efficiency through the fishery production base distribution center (FPC) on the production site board facility was studied. FPC is a new distribution system for Korean fishery products that has been promoted in earnest since 2012, and in this study, the effect before and after the introduction of FPC was analyzed using the DID (Difference in Difference) model for the effect of FPC in the fishery industry. The results of analysis shows that in the case of Wando Geumil FPC, the volume and unit price of consignment sales decreased during the analysis period, which was statistically significant. In the case of Sokcho FPC, the volume of consignment sales decreased during the analysis period, which was statistically insignificant. But the unit price of consignment sales rose during the analysis period, which was statistically significant. In the case of Gyeongju FPC, the volume of consignment sales increased during the analysis period, which was statistically significant at the 90% confidence level. But the unit price of consignment sales fell during the analysis period, which was statistically significant.
The model ship of this study, the Baek-Kyung fisheries training ship of Pukyong National University, has a length between perpendiculars of 85 meters, making it not subject to the IMO maneuverability standards. However, understanding the maneuvering characteristics of the vessel is essential for safe navigation. In this regard, this study was conducted to analyze the results from the sea trials of the model ship conducted in accordance with the IMO maneuverability standards. The results of the turning tests met the standards well while in the zig-zag tests, the first overshoot angle exceeded the standard in the 10°/10° test; however, such results met with a difference of 1.8° in the 20°/20° test. Additionally, using the course-stability discrimination formula, the calculated value was -0.0051, indicating unstable course-stability. The results of the stopping tests met the standards well. It is hoped that the analyzed maneuvering characteristics of the model ship from the study results will contribute to the safety of ship navigation.
This study aimed to quantitatively analyze the risk using data from 329 safety accidents that occurred in aquaculture fisheries management vessels over the recent five years (2018-2022). For quantitative risk analysis, the Bayesian network proposed by the International Maritime Organization (IMO) was used to analyze the risk level according to the fishing process and cause of safety accidents. Among the work processes, the fishing process was analyzed to have the highest risk, being 12.5 times that of the navigation, 2.7 times that of the maintenance, and 8.8 times that of the loading and unloading. Among the causes of accidents, the hull and working environment showed the highest risk, being 1.7 times that of fishing gear and equipment, 4.7 times that of machinery and equipment, and 9.4 times that of external environment. By quantitatively analyzing the safety accident risks for 64 combinations of these four work processes and four accident causes, this study provided fundamental data to reduce safety accidents occurring in aquaculture fisheries management vessels.
In this study, we collected and analyzed the current status of licenses for the limited fishery business and divided the problems related to licenses for the limited fishery business into partial damage compensation and cancellation compensation areas. In the case of partial damage compensation areas due to existing public water use projects, it is suggested that the issuance of licenses for limited fishery businesses should be reconsidered. In the case of cancellation compensation areas, it is recommended that the disposition of communal fishery businesses that do not require capital investment should be the principle. If capital such as facilities are invested, compensation should be made by Article 52 of the Enforcement Decree of the Land Compensation Act if the licenses for limited fishery business are closed due to other development projects. In addition, we proposed an improvement plan to establish a rational management system for licenses for limited fishery businesses. In addition to these improvement measures, we hope that further investigation and research on licenses for limited fishery business, which have been insufficient so far, will be conducted to promote the comprehensive use of fisheries resources and waters and the sustainable development of fisheries that are the objectives of the Fisheries Act, and contribute to the improvement of the quality of life of the people and the balanced development of the national economy.
Among Japan's agriculture, forestry, fisheries and regional revitalization plans established in June 2018, the key matters related to aquaculture include ① a new perspective on the sponge use system for the development of aquaculture and coastal fisheries, ② a comprehensive strategy for growth and industrialization of aquaculture, and ③ expansion of suitable aquaculture areas. There are four countermeasures including ④ research and development trends. In accordance with these key points, the Japanese government established a comprehensive strategy for aquaculture growth and industrialization by strategically setting aquaculture items in consideration of domestic and international demand, establishing a comprehensive strategy from production to sales and export, and then working in earnest to promote the aquaculture industry. This study analyzes environmental changes surrounding aquaculture in Japan and trends in fish farming and marine products, and summarizes the key points of the June 2018 Agriculture, Forestry, Fisheries and Regional Revitalization Plan to suggest measures that can be utilized in Korea’s aquaculture policy.
After the United Nations Convention on the Law of the Sea (UNCLOS) and the United Nations Fish Stocks Agreement (UNFSA) came into effect, international cooperation through Regional Fisheries Management Organizations (RFMOs) was required, and each RFMO established and adopted the Conservation and Management Measure (CMM) for the regional Observer Programs to collect data on fishing activities and biological information and to monitor compliance with its CMMs. The observer coverage required by RFMO is set differently for each organization, ranging from 5% to 100%. In addition, tuna-RFMOs recommend increasing observer coverage in longline fisheries by at least 20% for reliable quantitative analysis of not only target species but also bycatch species and ecologically related species such as sharks, seabirds, sea turtles, and marine mammals. Therefore, in this study, we discussed ways to improve the national observer programs of Korean distant water fisheries that should be addressed in the future to respond to the RFMO trends.
집약적이고 장기적인 양식어업 활동은 많은 양의 유기물을 발생시켜 퇴적환경과 생태계를 악화시켜왔다. 정부에서는 양식어장 의 환경 보전과 관리를 위해서 어장관리법을 제정하였고 이를 근거로 2014년부터 어류 가두리 양식장에 대한 어장환경평가가 실시되었 다. 따라서 어장환경평가를 위해 국내 환경에 적합한 과학적이고 객관적인 평가방법의 개발이 필요하였다. 이를 위해 저서다모류 군집과 양식장의 주 오염원인 유기물의 관계를 이용한 저서생태계 건강도지수(BHI)를 개발하였고, 본 연구에서는 저서생태계 건강도지수의 개발 과정과 계산방법을 소개하고자 한다. 저서생태계 건강도지수는 국내 연안역과 양식장에서 출현한 225종의 다모류를 대상으로 퇴적물 내 총유기탄소량의 농도 구배와 종별 분포특성을 연관지어 4개의 그룹을 나누고, 각 그룹에 가중치를 부여하는 방식으로 계산된다. 저서생 태계 건강도지수를 이용하여 저서동물군집을 4개의 생태등급(Grade 1: Nomal, Grade 2: Slightly polluted, Grade 3: Moderately polluted, Grade 4: Heavily polluted)으로 나누었다. 개발된 지수를 현장에 적용한 결과, 기존의 평가방법인 다양도 지수나 국외에서 개발된 AMBI와 비교해 보 다 정확하고 계절의 영향을 적게 받아 우리나라 환경을 평가하기에 효과적인 것으로 판단된다. 또한 저서생태계 건강도지수를 사용하면 어장환경을 정량화된 수치에 따라 등급화 할 수 있어 양식장 환경관리에 효율적으로 활용할 수 있을 것이다.
This study examines the significance and problems of the Fourth Amendment to the Fisheries Act, which went into effect in January 2023. Following the passage of the Aquaculture Industry Development Act, the fourth amendment to the Fisheries Act sought to reform the fisheries legislative framework, while also including significant changes. In particular, a number of new systems for managing fishing gear have been implemented, and local governments now have some autonomy in fisheries management, which has allowed for adjustments to be made to meet the needs of the fishing industry and changes in socioeconomic situations. However, as independent legislation for each fisheries sector continues, the subject of regulation under the Fisheries Act, as well as the Act's position as a basic legal system, has been continuously reduced, overshadowing the Act's objective. As a result, a full-fledged assessment of changing the legislation's name in the future is required, as well as addressing issues such as the lack of difference in the legislative purpose clause and the necessity for further revision of the definition clause. Therefore, any future revisions to the Fisheries Act should aim to overhaul the existing framework, including fishing licenses and permits.
The IUU Fishing Index is composed of 40 indicators. These indicators were grouped by state responsibilities (flag, coastal, port, and general including market) defined in the FAO IPOA-IUU (2001) and then by type into vulnerability, prevalence, and response. A total of 152 coastal nations was surveyed. Korea's total combined IUU Fishing Index was 2.49 in 2019 and 2.91 in 2021, indicating a drop in the ranking to the third worst out of 152 countries followed by China and Russia in 2021. The indicators that increased the IUU fishing risk in 2021 compared to 2019 included seven indicators of prevalence and two indicators of response while those reducing the risk included one prevalence and one response indicator. The IUU Fishing Index revealed that many fisheries observers and monitoring, control and surveillance (MCS) practitioners active in the waters of RFMOs jurisdiction where Korean distant water vessels operate have mentioned concerns about the compliance with RFMO conservation measures or fishing practices. It suggested that strengthening management intervention in the fishing sector is needed. The primary tool for management is the MCS system. Given the logistical difficulty of oversight from land, air and at-sea, there is a need to enhance MCS strategies through logbook data, at-sea observer and electronic monitoring program. It also suggested that MSC fisheries certification and fisheries improvement projects, which are widely used for improving fishing sector performance, could contribute to the eradication of IUU fishing and the promotion of sustainable distant water fisheries.
In this study, the AHP (analytic hierarchy process) technique was used to analyze the risk of expected risk factors and fishing possibilities during gillnet fishing within the floating offshore wind farms (floating OWF). For this purpose, the risks that may occur during gillnet fishing within the floating offshore wind farms were defined as collisions, entanglements, and snags. In addition, the risk factors that cause these risks were classified into three upper risk factors and ten sub risk factors, and the three alternatives to gillnet fishing available within the floating OWF were classified and a hierarchy was established. Lastly, a survey was conducted targeting fisheries and marine experts and the response results were analyzed. As a result of the analysis, among the top risk factors, the risk was the greatest when laying fishing gear. The risk of the sub factors for each upper risk was found to be the highest at the berthing (mooring), the final hauling of fishing net, and the laying of the bottom layer net. Based on the alternatives, the average of the integrated risk rankings showed that allowing full navigation/fisheries had the highest risk. As a result of the final ranking analysis of the integrated risk, the overall ranking of allowing navigation/fisheries in areas where bottom layer nets were laid was ranked the first when moving vessels within the floating OWF was analyzed as the lowest integrated risk ranking of the 30th at the ban on navigation/fisheries. Through this, navigation was analyzed to be possible while it was analyzed that the possibility of gillnet fishing within the floating OWF was not high.
The ‘Japanese Useful Fisheries Classification Table’, published in advance before the publication of the “Useful Fisheries of Japan”, is the first data to classify and introduce fisheries animals and plants in a single table. Therefore, it had received public attention immediately. However, The academy of animal studies at that time quickly pointed out that this classification table was a mixture of traditional and modern classifications, and that there were too many errors. However, Yoshio Tanaka, who was in charge of revising Yamamoto Arikatana, that wrote the classification table, was not an adherent of traditional taxonomy, nor was he ignorant of modern taxonomy. Nevertheless, the classification table, which was quite different from the well-known zoological classification at that time, was prepared. For example, the top classifications of marine organism are not at the same level, but rather a mixture of phylum and class, while the water insect contains several phylums, including Arthropoda, Echinodermata, Mollusca, and Coelenterata. As such, the method of classification of animals in the classification table was hard to understand in the zoological academy at that time. The reason for this unusual taxonomy was that the classification table showed classification of useful fisheries products, not intended to convey academic classification. In other words, it is not for the purpose of academic classification of all fishery products, but for the purpose of presenting standards that can be easily understood by those engaged in the collection, manufacture, and aquaculture of fishery products. This principle of ‘Useful Fisheries of Japan’ is also ascertained in the “Fishing Methods of Japan” and “Fishery Products of Japan”. Regarding the collection and processing of marine products, it could have shown how to catch whales, which are mammals, and how to dismantle whales and obtain oil and meat, according to academic classifications. However, the first appearances in the book include dried squid, abalone, shark fins, and sea cucumbers. In other words, the most important fishery products at that time are presented first. The contents of the classification table, which is considered somewhat bizarre, show where the purpose to compile Useful Fisheries of Japan.
This study was investigated in order to find composition and density of fisheries resource using bottom trawl in April, July, August, and November 2022 in the East China Sea. The average density of fisheries resource was estimated using the swept area method. As a result, 35 species were collected from the East China Sea. These included 21 fishes, six crustaceans, six cephalopods and two echinoderms. Seasonally, the average density of crustacean individuals per unit area were highest in November (692.1 inds./km 2 ), while cephalopod individuals per unit area were highest in August (39.4 inds./km 2 ). The average density of fish individuals per unit area were highest in August at 355.0 (inds./km 2 ).
This study investigated the species composition and bycatch status of fishes by fyke net between June and November 2020 in Asanho lake and Chungjuho lake. During the survey period, the catches in Asanho lake were identified as 2,931 individuals of 16 species from a total of six families and in Chungjuho lake were identified as 1,645 individuals of 14 species from a total of eight families. The dominant species in Asanho lake was Erythroculter erythropterus which accounted for 59.6% of the the total number of individuals and 40.5% of the total biomass caught. The dominant species in Chungjuho lake was Lepomis macrochirus which accounted for 48.2% of the the total number of individuals and Erythroculter erythropterus which accounted for 60.2% of the total biomass caught. The bycatch rates of non-commercial species in Asanho lake and Chungjuho lake were 77.0% and 82.6%, respectively. As a result of analyzing the frequency distribution of the total length of Carassius auratus and Siniperca scherzeri, which were the dominant species among commercial species, the bycatch rate of small individuals was 87.1%, and 42.7%, respectively.