UO2 kernels, a key component of fuel elements for high temperature gas cooled reactors, have usually been prepared by sol-gel methods. Sol-gel processes have a number of advantages, such as simple processes and facilities, and higher sphericity and density. In this study, to produce 900 μm-sized UO2 particles using an external gelation process, contact length extension of the NH3 gas of the broth droplets pass and the improvement of the gelation device capable of spraying 14 MNH4OH solution are used to form 3,000 μm-sized liquid droplets. To produce high-sphericity and high-density UO2 particles, HMTA, which promotes the gelation reaction in the uranium broth solution, is added to diffuse ammonium ions from the outside of the gelation solution during the aging process and generate ammonium ions from the inside of the ADU gel particles. Sufficient gelation inside of ADU gel particles is achieved, and the density of the UO2 spheres that undergo the subsequent treatment is 10.78 g/cm3; the sphericity is analyzed and found to be 0.948, indicating good experimental results.
Cosmetic industries have recently developed sun-block products, which are composed of W/O or O/W emulsion system. It was very difficult for waterproofing product to show the stability in W/O emulsion with TiO2. To enhance the stability of W/O emulsion, it needs to be combined with the water and oil soluble components as the gelling agents. The emulsifiers used in W/O were 3.0% of cetyl dimethicone copolyol, 2.0% of sorbitan sesquioleate as the basic emulsifiers, and 0.6% of quaternium-18 bentonite and 1.5% of dextrin palmitate as stabilizer were used. The content of titanium dioxide was optimized up to 8.0%. Titanium dioxide was used as the UV scattering powder coated with Al2O3(UV-sperse T40/TN). The sunscreen cream prepared with W/O emulsion system by using QB and DP showed higher stability than that of W/O emulsion system by using each QB and DP. W/O emulsion from Formula 3 for passing one year was very durable more than F1 and F2. Within W/O emulsion by observing F1, F2 and F3 for one year, F3 was more excellent than F2 and F3 when they were observed at RT, 4℃, 40℃, because F3 used the mixed QB and DP in W/O emulsion. The zeta potential for F1, F2, and F3 after one year were 21, 30 and 43, respectively. From these result F3 was found best stable emulsion. The in-vitro SPF value for F3 was 35 for the initial product at room temperature and also, the in-vitro SPF values of F3 was 32 for after one year. Finally, the mean in-vivo SPF value of 10 volunteers for F3 was 27.3 by the Korea cosmetic association made the rules of SPF.
The liposomes have been developed in many drugs and cosmetics fields. The liposomes prepared with main compounds of the intercellular lipids and lecithin. Amphiphile nonionic surfactants used for (PEG) n-sitosterol(n=5), diethanolamine cetylphosphate. The effect of gelation for liposomes have been on swelling reaction which have been mixed phospholipid with polyol-group at the high temperature. There were very good encapsulated properties of the active ingredients whether hydrophilic-group(magnesium ascorbyl phosphate, allantoin, sodium hyaluronate) and hydrophobic-group(vitamin-E acetate, vitamin-A palmitate). Optimum condition of liposomes were passed five times in the microfluidizer(700bar), wetting reaction temperature was at 95±5℃ for a hours. Particle size distribution of the vesicles should be within range 50-560nm(mean 200nm). The stability of liposomes for the course of time was stabilized for six months at 45℃. Application of the cosmetic was prepared moisturizing cream with liposomes of the phospholipid base.
DSC를 이용하여 acom starch와 com starch 및 starch-saccharide-water system 의 겔화와 노화에 관한 열적 메카니즘을 알아보았다. 전분에 fructose와 maltose를 첨가한 starch-saccharide-water 계의 엔탈피를 측정한 결과, 당을 첨가하지 않은 경우의 엔탈피 값보다 컸으며 겔화 온도 역시 증가하였는데 이는 당이 물과 상호 작용하여 비결정성 영역에 흡수된 자유수가 감소하고 결정부분이