본 연구에서는 와편모조류 Alexandrium affine(LIMS-PS-2345)의 생장에 미치는 용존태 무기 및 유기 영양염의 영향을 조사하였 다. 영양염 흡수 동력학 실험에서 A. affine의 최대흡수속도(ρmax)와 반포화상수(Ks)는 질산염에서 77.0 pmol/cell/hr과 17.6 μM, 인산염에서 15.5 pmol/cell/hr과 3.88 μM로 산출되어, 무기영양염에 대하여 높은 요구량 및 낮은 친화성을 가지고 있는 것으로 나타났다. 유기 영양염에 따른 A. affine의 생장속도를 확인한 결과, 유기 질소 urea, glycine와 유기 인 adenosine triphosphate(ATP), glycerol phosphate(Glycerol-P) 첨가구에서 무기 영양염 첨가구의 70 % 이상 생장속도를 보였다. 따라서 낮은 무기 영양염 환경에서 A. affine의 우점화와 종간경쟁에서 우위를 위해서는 용존태 유기 영양염의 이용이 필요할 것으로 생각된다.
Recycling of drained nutrient solution in hydroponic cultivation of horticultural crops is important in the conservation of the water resources, reduction of production costs and prevention of environmental contamination. Objective of this research was to obtain the fundamental data for the development of a recirculation system of hydroponic solution in semi-forcing cultivation of ‘Bonus’ tomato. To achieve the objective, tomato plants were cultivated for 110 days and the contents of inorganic elements in plant, supplied and drained nutrient solution were analyzed when crop growth were in the flowering stage of 2nd to 8th fruiting nodes. The T-N content of the plants based on above-ground tissue were 4.1% at the flowering stage of 2nd fruiting nodes (just after transplanting), and gradually get lowered to 3.9% at the flowering stage of 8th fruiting nodes. The tissue P contents were also high in very early stage of growth and development and were maintained to similar contents in the flowering stage of 3rd to 7th fruiting nodes, but were lowed in 8th node stages. The tissue Ca, Mg and Na contents in early growth stages were lower than late growth stages and the contents showed tendencies to rise as plants grew. The concentration differences of supplied nutrient solution and drained solution in NO3-N, P, K, Ca, and Mg were not significant until 5 weeks after transplanting, but the concentration of those elements in drained solution rose gradually and maintained higher than those in supplied solution. The concentrations of B, Fe, and Na in drained solution were slightly higher in the early stages of growth and development and were significantly higher in the mid to late stages of growth than those in supplied solution. The above results would be used as a fundamental data for the correction in the inorganic element concentrations of drained solution for semi-forcing hydroponic cultivation of tomato.
In this study, effects of nutrient and inorganic carbon on single cell emergence during the cultivation of microalgae were observed using colonial green algae, Pediastrum duplex. The concentration of inorganic carbon had significant effect on single cell emergence and its growth, but nitrogen and phosphorus concentration showed minor effects. According to P. duplex cultivation experiment, single cell started to be emerged around 500~750 mg-C/L of inorganic carbon concentration and it was bloomed dramatically at the higher values. And growth of P. duplex was started to be surpressed at the single cell formation concentration. From the results, it could be said that when we operate the microalgae systems for cultivation/harvesting or wastewater treatment, in order to avoid single cell formation, inorganic carbon should be maintained to the proper level
수경재배 시스템에 있어서 배액의 재활용은 생산비 절감 및 환경오염 방지를 위하여 중요하다. 방울토마토를 반촉성 수경재배 하면서 생육 단계별 공급액, 배액 및 잎의 무기성분 분석을 통하여 순환식 수경재배 시스템 개발을 위한 기초자료를 확보하고자 본 연구를 수행하였다. 연구목적을 달성하기 위해 주기적으로 공급액, 배액 및 식물체 잎을 채취한 후 무기물 함량을 분석하였다. 생육 초기에는 배액의 EC가 공급액과 비슷한 약 2.0dS·m-1였지만, 생육 후기로 갈수록 높아져 9화방 착과기에는 4.5dS·m-1였다. 영양생장이 왕성한 생육 초기의 pH는 6.4~6.7 범위였으나 생식생장이 강해진 생육 후기에는 5.9~6.1로 낮아지는 경향이었다. 생육 초기에는 공 급액과 배액의 NO3-N, P, K, Ca 및 Mg 농도가 비슷하였지만 생육 후기로 갈수록 공급액보다 배액의 농도가 높아지는 경향이었다. 생육 초기에 잎의 T-N 함량이 높았지만 후기로 갈수록 낮아지는 경향이었다. K와 Ca 함량은 생육 초기에는 낮았으나 후기로 갈수록 높았으며, P와 Mg 함량은 생육초기부터 후기까지 유사한 수준으로 분석되었다. 이상의 결과는 토마토 수경재배를 배액재 활용에 있어 무기원소 농도 변화를 교정하기 위한 기초 자료로 활용될 수 있을 것이다.
나물자원의 수경재배시 양액농도가 생장 및 무기물함량에 미치는 영향을 조사하고자 벌개미취, 원추리 및 질경이를 펄라이트 배지에 추식하여 70일간 재배 한 후 생장정도와 무기물 함량을 분석하였다. 벌개미취와 원추리의 초장, 줄기직경, 잎의 수, 신선중 및 건물중은 1.5배액 처리구에서 확연하게 우수한 결과를 나타내었다. 질경이의 지상부와 지하부 생체중 및 건물중 등은 양액의 농도가 0.2재액에서 1.5배액으로 증가할수록 증가한 반면, 엽수와 근장은 0.5배액과 표준농도에서 가장 높은 것으로 나타났다. Ca Mg 및 Na 함유량은 벌개미취의 경우 1.5배액에서, 원추리와 질경이는 0.25배액에서 가장 많았다. K 함량은 벌개미취와 원추리는 0.5배액에서, 질경이는 1.5배액에서 가장 많았다. P2O5는 나물종류 및 양액의 농도에 따른 차이가 거의 없었다.
We measured the amount of precipitation, stemflow, and throughfall and concentrations of nine major inorganic nutrients (H+, NH4 +, Ca2+, Mg2+, K+, Na+, Cl-, NO3 -, and SO4 2-) to investigate the nutrient inputs into soil from precipitation in Pinus densiflora and Quercus mongolica stands from September 2015 to August 2016. The precipitation inputs of H+, NH4 +, Ca2+, Mg2+, K+, Na+, Cl-, NO3 -, and SO4 2- into soil were 0.170, 15.124, 42.227, 19.218, 14.050, 15.887, 22.391, 5.431, and 129.440 kg·ha-1·yr-1, respectively. The P. densiflora stemflow inputs were 0.008, 0.784, 1.652, 1.044, 0.476, 0.651, 1.509, 0.278, and 9.098 kg·ha-1·yr-1, and those for Q. mongolica were 0.008, 0.684, 2.429, 2.417, 2.941, 1.398, 2.407, 0.436, and 13.504 kg·ha-1·yr-1, respectively. The P. densiflora throughfall inputs were 0.042, 21.518, 52.207 27.694, 20.060, 24.049, 37.229, 10.241, and 153.790 kg·ha-1·yr-1, and those for Q. mongolica were 0.032, 15.068, 42.834, 21.219, 20.294, 20.237, 24.288, 5.647, and 119.134 kg·ha-1·yr-1, respectively. Of the total throughfall flux (i.e., stemflow + throughfall flux) of the nine ions for the two species, SO4 2- had the greatest total throughfall flux and H+ had the lowest. The net throughfall fluxes of the ions for the two species had various correlations with the precedent dry period, rainfall intensity, rainfall amount, and pH of precipitation. The soil pH under the Q. mongolica canopy (4.88) was higher than that under the P. densiflora canopy (4.34). The difference in the soil pH between the two stands was significant (P < 0.01), but the difference in soil pH by the distance from the stems of the two species was not (P > 0.01). This study shows the enrichments of inorganic nutrients by two representative urban forests in temperate regions and the roles of urban forests during rainfall events in a year.
This study was conducted to investigate the effects of temperature and shade, which are basic environmental conditions, on growth, yield, inorganic components, and general components of Codonopsis lanceolata, in order to obtain basic data for improving yield capacity. In natural light, in the 15, 20, and 25°C groups, the plant heights ranged between 218.9 cm and 223.9 cm, and there was no significant difference between groups. However, the leaf size was larger in shade, and the leaf area was significantly larger in the 15 and 30°C groups. In natural light, root length and diameter were shorter and thinner when the temperature was higher, and growth was highly suppressed at 30°C. With regards to macroelements, the contents of Na, Mg, and P increased as temperature increased, regardless of the plant part; however, no constant tendency was observed in K and Ca according to temperature. The contents of Mg and Ca (from highest to lowest) were in the order leaf>stem>root, whereas the contents of Na, P, and K were in the order stem>leaf>root. Contents of general components varied according to temperature, and were highest at 30°C. While the plant height was increased under the constant 25°C +DIF (Difference between day and night temperature) condition, growth was suppressed in the –DIF group, in which the night temperature was higher than the day temperature, which suggests that a change in night temperature is one of the factors that affects the growth of C. lanceolata. As in the growth of the above-ground parts, fresh weight of the root was high in the constant 25°C group and +DIF group. Notably, it was more than 2.5 times the fresh weights in the constant 15°C group, constant 20°C group, and –15 DIF group.
This experiment was conducted to identify the variations in inorganic nutrients and plant growth in millet (Panicum miliaceum L.) due to soil salinity. The soil series was Munpo and soil texture was silt loam. The experimental soil was amended so that the soil had salinities of 0.8 dS m-1, 1.6 dS m-1, 3.2 dS m-1 and 4.8 dS m-1. Millet was transplanted 15 days after sowing. As soil salinity increased, the degree of reduced growth was in the order of seed production > root dry matter > plant dry matter > culm length > tiller number > stem thickness > Panicle length. Seed production was decreased to 18.9% in soil salinity of 1.6 dS m-1, 36.9% in of 3.2 dS m-1, and 50.7% in EC of 4.8 dS m-1. Root dry matter decreased to 35.8% in EC of 3.2 dS m-1, and to 40.5% in EC of 4.8 dS m-1. As soil salinity increased, Total nitrogen content increased in all aboveground parts, roots and seeds. However, There was no difference in CaO, P2O5, K2O and, MgO in soils of different salinity. On the other hand, Na2O content was higher in the order roots> shoots> seed, and in the case of roots, Na2O content increased to 1.02% in soil salinity of 4.8 dS m-1. However, up to soil salinity of 1.6 dS m-1, the Na2O content of the seed was similar to that in plant grown in the Control conditions(0.8 dS m-1). In conclusion, taking into consideration economic factors, millet could be cultivated in soil with salinities of up to approximately 1.6 dS m-1, and seed produced from reclaimedland would be suitable for human consumption.
We investigated the spatiotemporal variations of dissolved inorganic nutrients along a saline gradient to estimate nutrient fluxes in the Seomjin River estuary during dry (March 2005, March 2006, March 2007, and March 2008) and rainy seasons (August 2005, July 2006, July 2007, and July 2008). Dissolved inorganic nitrogen concentrations were similar in the endmembers of freshwater for the rainy and dry seasons. In contrast, the concentrations of dissolved inorganic phosphate and silicate in the rainy season were approximately 2-3 times higher than those in the dry season. River discharge was approximately 10 times higher in the rainy season (212 m3 sec-1) than in the dry season (21 m3 sec-1). The fluxes of dissolved inorganic nitrogen, phosphate, and silicate were 2.91, 0.004, and 2.51 tons day-1 in the dry season and 7.45, 0.421, and 30.5 tons day-1 in the rainy season, respectively. Although the range of nutrient concentrations were similar to previous results from investigations in the Seomjin River estuary, the nutrient fluxes were differed according to river discharge for different survey periods.
냉수관계일수가 엽신, 지경, 영곡의 무기성분조성에 미치는 영향을 조사분석하였던바 다음과 같은 결과를 얻었다. 1. 엽신, 지경, 영각의 무기성분조성은 냉수관계일수가 길어질수록 전질소함량은 증가하나 인산, 가리, 규산함량조은 낮았으며 숙기별로는 전질소와 인산은 출수기 가리는 엽신과 지경에서는 출수기, 영각은 성숙기, 규산은 성숙기에 많았고 지경의 무기성분함량은 엽신보다는 영각과 유사한 양식을 나타냈다. 2. 냉수에 의해 도체가 저질소흡수과정장해를 받으면 인산, 가리, 규산도 흡수장해를 받으며 그 경향은 지경보다는 엽신과 영각의 영양장해가 현저하였으며 도체에 전질소함량이 높고 규산함량이 낮으면 지경과 영화의 퇴화 및 불임이 증가되고 지경의 영양장해가 엽신과 영각보다 퇴화 및 불임에 밀접하게 관여하였다.
80년 전북지방에 래습한 이상저온 현상이 수도생육 및 양분흡수 특히 지엽과 인각의 무기성분 조성에 지대와 품종간에 반응하는 정도를 알고자 본 시험을 수행하였던 바 다음과 같은 결과를 얻었다. 1. 지대별 냉온에 의한 출수반응은 품종간의 차가 인정되었는데 특히 표고가 높아질수록 일본형 품종에 비하여 통일형 품종이 출수지연이 심하였다. 통일형 품종 중에서도 밀양 4002, 한강찰벼 등은 출수지연 폭이 커 지연형냉해에 약한 품종으로 인정된다. 2. 저온에 의한 출수지연은 불임을 야기시키며 임실과 등숙비율은 품종의 내냉성, 표고에 영향을 받아 수량을 감수시킨다. 3. 냉해에 의해 불임율이 높은 품종은 지엽중의 전질소함유율은 많으나 가리와 규산함유율은 상대적으로 낮아지는 상관관계를 보인다. 4. 냉해에 의해 유기된 불임인과 정상적인 임실인의 인각중에 흡수축적된 양분과의 관계는 불임인각일수록 전질소함량이 현저히 높고 가리와 규산은 낮은데 비해 임실인각은 불임인각과는 반대로 전질소함량이 낮고 가리와 규산의 함량은 높아 이들이 임실에 어떤 중요한 역할을 할 것으로 여겨지며 품종의 내냉성과도 깊은 관련성을 가지고 있다고 보여진다.