In the present study, we examined the effect of different lecithin concentrations on spermatozoa characteristics after freeze-thawing. Hanwoo semen was collected from one bull and divided into five groups (tris-citric acid semen extender with 0, 0.1, 0.25, and 0.5% lecithin groups as well as a 20% egg yolk group). Semen extender with 20% egg yolk was used as control treatment. After the freeze-thawing of semen, spermatozoa motility, motility parameters, viability, acrosomal membrane integrity, mitochondrial membrane potential, and plasma membrane integrity were examined. In experiment 1, the effect of different lecithin concentrations on spermatozoa motility and associated parameters was examined. The 0.1% lecithin-treated spermatozoa showed greater fast progressive motility (%) in addition to higher VCL (μm/s), VSL (μm/s), and VAP (μm/s) when compared to other lecithin concentration groups and controls. In experiment 2, the effect of different lecithin concentrations on spermatozoa viability was examined. The 0.1% and 0.25% lecithin addition groups (55.4±7.3 and 51.7±11.2%) exhibited similar viability compared to the control group (54.1±12.6%). In experiment 3, the effects of different lecithin concentrations on viability, acrosomal membrane integrity, and mitochondrial membrane integrity of spermatozoa were examined. The percentage of live spermatozoa with an intact acrosome and high mitochondrial membrane potential in the 0.1% lecithin group was not significantly different compared to the control group (31.2±13.3 vs. 30.5±10.9%). In experiment 4, the effect of different lecithin concentrations on the plasma membrane integrity of spermatozoa was examined. The percentage of spermatozoa with a normal plasma membrane was similar between the 0.1% lecithin and control groups (31.2±13.3 vs. 30.5±10.9%). In conclusion, we suggest that semen extender supplemented with 0.1% lecithin can replace 20% egg yolk without reducing spermatozoa quality.
In this study, We investigated the properites of nano-emulsions containing hydrogenated lecithin prepared by high pressure homogenizer. The size of droplet of emulsions prepared by homogenizer at various rpm (rotation per minute) was not measured due to the unstability of emulsions, however, the size of droplet of nano-emulsions prepared by high pressure homogenizer was around 300 nm and the appearance of emulsions was bluish. The stability of emulsions with various lecithin concentration was tested against time. POV (Peroxide value) of emulsions were plotted against time. POVs of emulsions prepared with an egg lecithin and a soy lecithin were increased with time, however, POV of emulsion with Lecinol S-10® was kept constant within 60 hours and at 60℃. In consumer test, the nano-emulsion showed higher affinity regardless of skin type. Both of irritation scores of emulsions were similar.
Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of 0.1~0.25μm, while that of CNA-I shows large unilamellar liposomes with diameter of 0.2~1.2μm. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.
Provitamin B5 liquid crystal (PVB5-LC) was the new emulsion system to enhance moisturizing activity on the skin. In this study, it should be mentioned that PVB5-LC could be prepared with the main compound of hydrogenated lecithin (HL) in oil-in water (O/W) emulsion. The key ingredient of humectants was contained 2% of provitamin B5 (PVB5) into the PVB5-LC. The best suitable compositions of PVB5-LC were made from 4.0 wt% of HL, 4.0 wt% of cetostearyl alcohol (CSA) as emulsifier and gelling agent, 3.0 wt% of 1,3-butylene glycol (1,3-BG) and 2.0 wt% of glycerin as moisturizers, 3.0 wt% of cyclomethicone (CMC), 3.0 wt% of isononanoate (ININ), 3.0 wt% of capric/caprylic triglyceride (CCTG), 3.0 wt% of macadamia nut oil (MNO) as emollients. As the analytical result of PVB5-LC, it could know that the distribution range of particle size was 0.14 to 12.37 m level (mean size 3.24 m). It was certified the multi lamellar phase around the droplet of liquid crystal when observed the droplet particles through a polarization microscope. And it clinically was tested the effectiveness of moisturizing activity (in-vivo) compared with control sample (O/W emulsion). The effectiveness of moisturizing activity of PVB5-LC with Skincon-200EX after 6 hours went up 49.0% (p〈0.05, n=20) whereas the effectiveness of moisturizing activity of generally O/W emulsion cream was 25.7% (p〈005, n=20). Also, in case of Comeometer CM-825, the moisturizing activity of PVB5-LC after 6 hours rose 36.6% (p〈0.05, n=20) whereas the effectiveness of moisturizing activity of generally O/W emulsion cream was 10.8%. Therefore, it was known that the effectiveness moisturizing activity of PVB5-LC with HL was remarkably superior compared with O/W emulsion cream.
In this study, it should be mentioned that Lipid-LCG can be prepared with the main compound of hydrogenated lecithin in oil-in water emulsion. The results of its physical property and stability are as follows. First, the best suitable compositions of Lipid-LCG are made from 4.0wt% of the hydrogenated lecithin, 4.0wt% of cetostearyl alcohol as emulsifier and gelling agent, 3.0wt% of butylene glycol and 2.0wt% glycerin as moisturizers, 3.0wt% of cyclomethicone, 3.0wt% of isononyl-isononanoate, 3.0wt% of capric/caprylic triglycerides, 3.0wt% of macadamia oil as emollients. Second, As the optimum conditions to form Lipid-LCG, which figured out 6.0 ± 1.0 for pH level, 32kg/mm, min for hardness to make a .essence to be formed the ternary phase of liquid crystal(multi-lamellar type). Third, as the analytical result of this system, it obtained that particle size is 1~8μm level, and is certified with it at 400 and 1,000 magnifications by microscope. The stability of Lipid-LCG is very stable on condition of a low temperature (4℃), a room temperature (25℃) and a high temperature (40℃), which is not to be split in for a long time(for 3-month). We produced our own moisturizing essence, which has a good affinity to skin by means of this system.
We investigated the property of formation of mono-vesicle(designated nano-some) with using of the combined co-emulsifiers and phospholipid. Nano-some was prepared with hydrogenated lecithin(HL) and diethanolamine cetyl phosphate(DEA-CP) by swelling reaction. Kojic acid and kojic dipalmitate could be made stabilization by nano-some system using microfluidizer(MF). Nano-some has a good affinity to skin by means of this system. The composition was compounded by 2% of hydrogenated lecithin (phosphatidyl choline contained with 75%, 0.5% of DEA-CP and 0.5% of diglyceryl dioleate (DGDO). To make nano-some, several conditions of MF have to be considered as follows. The optimum pH was 6.0. The pressure was 10,000psi and passage temperature was at 306℃. The nano-some base was passed to homogenize continually 3 times through MF. The Particle size distributions of the vesicles were with in 57~75.7nm(mean 66nm) by measuring the Zetasizer-3000. Zeta potential of vesicles with 3 times passage through MF was -24.8mV. Formations for nano-some vesicle certificated photograph by scanning electric magnification (SEM). Stability of nano-some was very good for 6months. The turbidity was very good transparency compared nano-some with liposome. It was formed the mono vesicle in the opposite direction to be formed the multi-lamellar vesicle of liposome.
Thermograms of methylene blue(MB) in L-α-lecithin vesicle and incorporated purple membrane vesicle(InPM) systems have been studied by photochemical reaction differential scanning calorimetry at 25~55℃. Phase transition temperatures of lecithin vesicle, purple membrane(PM), and InPM were found to be independent of illumination of light(436nm) at 39~40℃, but endothermic phase transition was found in InPM vesicle. In MB-InPM system, endothermic phase transition was found on unillumination of light at 40~42℃, but exothermic phase transition was found on steady illumination of light at 48~52℃. It was estimated that the light energy absorbed from MB on vesicular surface was transferred to PM, and the transferred energy was redistributed to hydrophobic site of membrane. Therefore, the exothermic phase transition was measured at high temperature because of the increased hydrophobicity of acyl chain.
The blended oil was prepared from cottonseed oil and palm olien. The oxidative stability of blended oil after the addition of natural tocopherol and soybean lecithin during heating was investigated and the effects of lecithin were evaluated. The result obtained were as follows: 1. When the concentration of palm olein in blended oil during heating was increased, the oxidative stability was improved. 2. By both addition of natural tocopherol and soybean lecithin during heating in blended oil, induction period was considerably increased and residual ratio of tocopherol was high. 3. The oxidative stability of potato chips prepared from blended oil was higher in the prsence of lecithin than in the absence of it.
오가노겔은 반고형상이며 3차원의 네트워크 구조로 이루어진 친유성 용매로 이루어져 있다. 본 연구에서는 유상과 수상에서 모두 난용성 특징을 가진 제니스테인을 포함하는 레시틴 오가노겔을 개발하였다. 이 시스템은 안정할 뿐만 아니라 경피 흡수 실험에서도 높은 흡수율을 보였다. 본 오가노겔 제형에 적합한 원료들을 선별한 결과, 수화된 레시틴, 해바라기유, dipropylene glycol (DPG), polyethylene glycol (PEG)이 이 시스템에서 주로 사용되었다. 레시틴 오가노겔의 제조에 적합한 원료의 함량은 phase ternary diagram 작성을 통하여 결정하였다. 제조된 레시틴 오가노겔을 organoleptic characteristics, stability, pH, rheology, phase tran-sition temperatures, microscopic analysis, skin penetration 실험을 통해 평가하였다. 본 연구 결과를 통해 본 논문에서 제시하는 레시틴 오가노겔 제형은 안정한 상태에서 난용성 물질을 높은 농도로 피부에 효과적으로 전달할 수 있는 제형으로 활용될 수 있을 것이라 생각된다.
최근 전 세계적으로 석유 유래 합성 화장품 원료의 사용을 배제한 천연 화장품을 찾는 고객들이 계속적으로 증가하고 있지만 이러한 천연 화장품 중에서도 기능성을 소구하는 제품은 거의 없는 상황이다. 이는 천연 유래 원료 중에서 기능성이 검증된 원료가 거의 없을 뿐 아니라, 그러한 천연 기능성 원료들이 있다고 하더라도 그것들을 천연 원료만으로 안정한 제형을 유지하기가 매우 힘들기 때문이다. 본 연구는 난용성 천연 주름 기능성 물질인 올레아놀릭산을 천연 유래 수첨 레시틴을 이용하여 안정하게 가용화시키는 것에 관한 것이며, 유기농 화장품 인증이 가능한 가용화 제형의 처방을 개발하는 것을 목표로 하였다. 다른 합성 가용화제를 사용할 경우 45 ℃에서 2 ~ 3일 내에 올레아놀릭산의 석출이 관찰되었지만, 천연 유래 수첨 레시틴을 이용한 제형에서는 4주 동안 입자 크기의 큰 변화 없이 안정하게 유지되었다. 제형 내 올레아놀릭산의 함량은 25 ℃ 및 40 ℃에서 보관중인 샘플을 대상으로 24주간 측정하였는데, 두 온도에서 모두 90 % 이상을 보여주어 올레아놀릭산이 제형 내 분해 없이 안정하게 유지되는 것을 확인하였다. 또한 보습력 및 주름 개선 등의 임상시험을 통해 제품의 피부 효능과 안전성을 확인하였다.
오일/수첨 레시틴/물 계에서 전단력이 다른 두 혼합기로 제조된 나노에멀젼의 안정성에 대하여 연구하였으며, 계면활성제의 농도에 따른 나노에멀젼의 입자 크기와 안정성을 조사하였다. 입자의 크기는 광산란법에 의하여 측정하였으며 입자크기의 시간에 따른 변화를 관찰하였다. 실험 결과 나노 에멀젼 불안정화 과정은 Ostwald ripening에 의해 지배되었다. 입자 크기가 100 ∼ 200 nm 범위에서는 오일에 대한 계면활성제의 비율이 증가함에 따라 안정성이 감소하였으나 입자 크기가 300 ∼ 400 nm의 범위에서는 반대의 경향을 보였다.