검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

분야

    발행연도

    -

      검색결과 34

      2.
      2023.11 구독 인증기관·개인회원 무료
      To investigate the mechanical integrity of spent nuclear fuel, the failure behavior of the cladding tube was examined under accident conditions. According to the SNL report, the failure behavior of cladding can be broadly classified into two types. The first is failure due to bending load caused by falling. The second is failure due to pinch load caused by space grid. In this study, mechanical integrity was evaluated through the stress intensity factor applied to the crack in failure behavior due to bending load. Since the exact value of the impact load due to fall was unknown, the load was applied by increasing the value up to 200 G in 20 G increments. The size of the crack is an important input variable, and 300 um was given by referring to the EPRI report, and the elastic modulus, a material property that determines the stress field, was given 75.22 GPa by referring to the FRAPCON code. Since the relationship between the direction of stress and the direction of the crack is also a major variable, simulations were conducted for both cracks perpendicular to and parallel to the stress direction. It was confirmed that at a load of 200 G, when the crack was parallel to the stress direction, stress concentration did not occur and had a very low stress intensity factor 0.01 􀜯􀜲􀜽√􀝉. When perpendicular to the direction of stress, the stress intensity factor showed a value of 1 􀜯􀜲􀜽√􀝉. However, considering that the critical value of the stress intensity factor due to hydride is 5 􀜯􀜲􀜽√􀝉, it can be seen that perpendicular result also ensures the mechanical integrity of the cladding.
      3.
      2023.05 구독 인증기관·개인회원 무료
      Research on the safety of nuclear spent fuel has been heavily experimented and modelled from a mechanical perspective. The issues of corrosion, irradiation creep, hydride and hydrogen embrittlement have been addressed more than two decades since the early 2000s. Among these degradation behavior, hydrogen embrittlement and hydride reorientation have been the most important topics for establishing the integrity of nuclear spent fuel and have been studied in depth. In order to assess the safety of spent nuclear fuel, firstly, it is necessary to establish the safety criteria in all nuclear cycle, i.e., the failure criteria guidelines for nuclear fuel assemblies and nuclear fuel rods, and then examine the safety analysis. The contents of U.S.NRC Regulations, Title 10 General, Chapter 1 Code of Federal Regulation (CFR), Part 50, 71 and 72, describe the safety criteria for the safety assessment of nuclear fuel assemblies and nuclear fuel rods. In this study, technically important points in safety analysis on nuclear fuel are checked through the reference of those NRC regulation. As result, we confirmed that the safety assessment of nuclear fuel after 20 years of interim storage is now being tested by ORNL and PNNL. There are not quantitative criteria related to material safety. However qualitative criteria which is dependent on environmentally condition describe the safety analysis. There is some literature study about DBTT, yield stress, ultimate tensile strength, flexural rigidity data. In FRAPCON code Modelling of yield strength and creep had been established, but radial hydride or hydride reorientation has not considered.
      4.
      2022.05 구독 인증기관·개인회원 무료
      In recent years, the importance of the thermo-hydraulic-mechanical-chemical coupled processes is increasing in the performance assessment (PA) of the high-level radioactive waste repository. In the case of mechanical behavior, it is very important because it can affect fluid flow and radionuclide transport by changing the porosity and permeability of the medium. In particular, Excavation Damaged Zone (EDZ) should be considered essential in PA because the migration of radionuclide is affected by the enhanced hydraulic transmissivity and altered geomechanical behavior of EDZ. Furthermore, due to various thermo-hydraulic behaviors such as decay heat generated from radioactive waste, pore water pressure increase, and swelling pressure of bentonite buffer material, mechanical evolution is occurred which may change the size and physical properties of EDZ. Therefore, to solve this problem, analysis of coupled thermal-hydraulic-mechanical (THM) processes with the effect of long-term evolution of EDZ due to the mechanical behavior should be accompanied. In this study, numerical model for the long-term evolution due to mechanical behavior considering EDZ using the Adaptive Process-based total system performance analysis framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). In the case of EDZ, the concept of Mazars’ damage evolution model was applied to simulate the behavior using the continuum model, and the change in hydraulic properties according to the degree of damage was considered. To investigate the importance of mechanical behavior in PA, the results were compared by performing numerical analysis according to the presence or absence of mechanical analysis. Finally, numerical analysis considering the mechanical evolution of EDZ was conducted using the model developed in this study to investigate the effect of EDZ.
      5.
      2022.05 구독 인증기관·개인회원 무료
      The conventional research trend on spent fuel was safety analysis based on mechanical perspective. Analysis of spent fuel cladding is based on the temperature of cladding and pressure inside cladding. To improve fuel cladding analysis, precise and accurate thermal safety evaluation is required. In this study a database which is about thermal conductivity and emissivity for the thermal modeling was established for a long-term safety analysis of spent fuel. As a result, we confirmed that the thermal conductivity of zirconium hydride was not accounted in conventional model such as FRAPCON and MATPRO. The conductivity of zirconium and its oxide was evaluated only as a function of temperature. However, the behavior of heat conductivity and emissivity is determined by the change of the material properties. The material properties depend on the microstructural characteristic. It can be seen that this conventional approach does not consider the microstructure change behavior according to vacuum drying process or burn-up induced degradation phenomena. To improve the thermal properties of spent nuclear fuel cladding, the measurement experiments of heat conduction and emissivity are required according to spent fuel experience and status such as the number of vacuum drying, cooling rate, burn up, hydrogen concentration and oxidation degree. In previous domestic reports and papers, we found that relative data between thermal properties and spent fuel experience and status does not exist. Recently, in order to understand the failure mechanism of hydrogen embrittlement, many studies have been conducted by accounting and spent fuel experience and status in a mechanical perspective. If microstructure information could be obtained from these studies, the modeling of thermal conductivity and emissivity will be possible indirectly. According to a recent abroad paper, it was confirmed that the thermal conductivity decreased by about 30% due to irradiation damage. The radiation damage effects on thermal conductivity also has not been studied in zirconium oxide and hydride. These un-revealed phenomena will be considered for the thermal safety model of spent fuel.
      6.
      2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
      초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 이러한 부등축소는 비구조요소의 사용성과 구조요소의 안전성에 대해 문제를 야기할 수 있다. 따라서 이 연구에서는 120층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 수행하여 각 수직부재의 부등축소량을 비교하고 콘크리트의 장기거동의 영향을 분석하였다. 이를 위해 영향요 인에 따라 축소량을 탄성축소량, 크리프축소량, 건조수축축소량으로 구분하여 검토하였으며 최대 절대축소량에 대한 지배적 요인을 분석하였다. 또한, 입주완료 후 30년에서 발생한 부등축소량에 대해 사용성 검토를 진행하였으며, 구조요소에 대해 설계단계와 시공 단계의 부재력을 비교하여 분석하였다.
      4,200원
      7.
      2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
      이 연구에서는 RC 연결구조를 갖는 교량의 장기거동을 확인하기 위한 현장조사를 수행한다. 우선, 온도계 센서, 변위 센서, 변형률게이지를 설치하고, 3년 6개월동안 현장계측을 수행하였다. 현장계측 결과, 수축변위는 동일한 온도변화에서 흉벽에 작용하는 뒷채움제의 토압의 영향으로 인해 신장변위보다 크게 나타났다. 또한, 상부구조 변위는 하부구조의 강성의 영향으로 인해 하부구조보다 크게 나타났다. 변형률 측정 결과, 보강재의 응력은 온도변화에 따른 압축응력과 인장응력의 반복이 원인인 것으로 나타났다.
      4,000원
      8.
      2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
      본 논문은 지속하중을 받은 철계-형상기억합금 표면매립보강 철근콘크리트 보의 휨 거동에 대한 실험적 연구이다. 연구를 위하여 철계-형상기억합금 보강 유ㆍ무 및 철계-형상기억합금 활성화 유ㆍ무를 변수로 하여 3개의 실험체를 제작하였다. 장기거동을 측정하기 위해 약 1 ton 중량의 콘크리트 추를 시험체 중앙에 거치하였다. 상재하중 재하 후 철계-형상기억합금을 15kW용량의 전력공급장치를 통해 활성화하였다. 이 후 다이얼게이지를 이용하여 실험체 중앙의 처짐을 528일동안 측정하였다. 528일 후 실험체의 잔존강도를 확인하기 위해 휨 파괴 실험을 실시하였다. 실험결과, 콘크리트 추를 거치한 후 철계-형상기억합금으로 보강된 실험체는 무보강 실험체 대비 50%이상 감소된 즉시처짐을 나타냈다. 또한 철계-형상기억합금을 활성화 시킨 실험체가 활성화 시키지 않은 실험체에 비해 약 35.3% 감소된 추가처짐을 나타냈다. 잔존강도 실험결과 철계-형상기억합금으로 보강한 실험체는 무보강 실험체대비 26% 이상의 극한강도 증가를 나타냈다. 또한 철계-형상기억합금 활성화는 초기 강성을 증가시키며 극한 강도에 미치는 영향은 미미한 것으로 나타났다.
      4,000원
      9.
      2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      후쿠시마 원자력 발전소의 사고로 인해 일본 동부 지역에 다량의 방사성 핵종이 축적되었다. 이러한 방사성 물질은 숲, 도시, 하천, 호수를 포함한 넓은 범위에서 관측되고 있다. 방사성 세슘의 토양 입자에 강하게 흡착하는 특성 때문에 방사성 세슘은 침식된 토사와 함께 이동하여, 인구가 밀집한 하천 하류지역으로 그리고 연안으로 서서히 이동한다. 본 연구에서는 수생환경의 오염된 토사의 이동을 재현하기 위한 수치모델을 개발하고, 그 성과의 일부를 한국원자력연구원 내에 위치한 침식 된 토사 관측 장비에서 관측된 결과와 비교하였다. 수집된 토사 시료의 입경 특성을 분석하기 위해서 표준 체분석과 이미지 분석법을 적용하였다. 수치 모델은 초기 포화도, 강우의 토사 침투율, 멀티 레이어, rain splash 등을 고려하여 현실의 강우에 따른 토사의 이동을 시뮬레이션 할 수 있도록 개발하였다. 2019년 연구에서는 수치모델에 나무에 의한 강우 쉴드 효과, 증발효과, 표면물의 쉴드 효과 등이 추가될 계획이다. 토사 유실 관측 장비를 2018년부터 월성 원전 인근에 설치해 지속적으로 관측 자료를 수집하고 있다. 이러한 관측자료를 기반으로 방사성 핵종의 강우, 하천, 연안으로 이동하는 장기 영향 평가 수치모델을 개발할 계획이다.
      4,500원
      11.
      2018.05 구독 인증기관·개인회원 무료
      Reinforced earth retaining walls are easier to construct and more economical than concrete retaining walls, and the applicability to the parts where the retaining wall structures are needed is gradually increasing. Since 1980, reinforced earth retaining walls have been used in various ground and environmental conditions, and various types of damage have been found in the maintenance stage due to various conditions of the applied site. Especially, when the ground is sloped, the damage is more serious than the case where it is not. Therefore, in this study, the long-term behavior of reinforced earth retaining wall constructed on the expressway according to the slope of the ground is analyzed.
      13.
      2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.
      4,000원
      14.
      2016.07 구독 인증기관·개인회원 무료
      With the ecological environment deteriorating and rapid growth of world population, sustainable issue becomes a hot issue all over the world. All the state, industry and consumer levels pay more attention to the sustainable filed. Even Kotler (2011) in his study mentioned that the need for sustainable issue means new challenges to the scholars and practitioners. This research aim to the sustainable consumption filed in China. Based on the previous studies, sustainable consumption can be summarized including clothing, food, housing and travelling is an important way to cope with the deteriorating ecological environment and the rapid growth of world population. The Chinese government attaches great importance to sustainable consumption, at the same time the government has issued many sustainable policies to promote the development of sustainable consumption concept. Environmental policies consists of three kinds of instruments (regulation instrument, economic instrument, and information instrument), but which instrument is more effective to promote people’s sustainable consumption attitude and behavior, and whether these effects will be changed or not in different context, previous studies have no clear answer. Based on the literature view, this study organized and established the concept research model. Following the logic of policy-attitude-behavior, the researchers examined the relationship among environmental policy instruments, sustainable consumption attitude and sustainable consumption behavior. Meanwhile, due to long-term orientation was an important variable to explain attitude and behavior, based on time orientation theory, this research also tested the moderating role of long-term orientation between environmental policy instruments and sustainable consumption attitude. Data were collected from Chinese residents in the medium size city, after excluding 67 invalid questionnaires, 325 questionnaires were used to analysis. Through exploratory factor analysis and confirmatory factor analysis, this study confirmed that the scales of main variables had good reliability and validity. Researchers adopted SPSS19.0 to conduct multiple regression analysis. Results showed that regulation instrument and economic instrument had significant effects on sustainable consumption attitude, but the effect of information instrument was not significant. Long-term orientation played the positive moderating role between economic instrument and sustainable consumption attitude; consumers’ sustainable consumption attitude was correlated with sustainable consumption behavior, and was as a mediator between regulation instrument, economic instrument and sustainable consumption behavior. Finally, based on the research results we give some suggestions and contributions to both academy and practice. The conclusions of this study can contribute to the enrichment of environment policy theory,time orientation theory and sustainable consumption,and can provide a certain theoretical guidance and reference for the issue of government on how to promote the development of sustainable consumption. We also point out the limitations of this study and some suggestions for further researches.
      15.
      2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      In this work, on-site corrosion behavior of heat resistant tubes of T91, used as components of a superheater in a power plant for up to 25,762 h, has been investigated using scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction(EBSD), with the objectives of studying the composition, phase distribution, and evolution during service. A multi-layer structure of oxide scale was found on both the steamside and the fireside of the tube surface; the phase distribution was in the order of hematite/magnetite/spinel from the outer to the inner matrix on the steamside, and in the order of slag/magnetite/spinel from the outer to the inner matrix on the fireside. The magnetite layer was found to be rich in pores and cracks. The absence of a hematite layer on the fireside was considered to be due to the low oxygen partial pressure in the corrosion environment. The thicknesses of the hematite and of the slag-deposit layer were found to exhibit no significant change with the increase of the service time.
      3,000원
      16.
      2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Ethylene Tetrafluoroethylene (ETFE) has been widely used in long-span buildings because of its light weight and high transparency. This paper studies the short and long term creep behaviour of ETFE foil. A series of short-term creep and recovery tests were performed, in which the residual strain was observed. A long-term creep test of the ETFE foil was also performed over 110 days. A viscoelastic-plastic model was then established to describe the short-term creep and recovery behaviour. The model contains a traditional multi-Kelvin part and an added steady-flow component to represent the viscoelastic and viscoplastic behaviour, respectively. The model successfully fit the data for three stresses and six temperatures. Additionally, time-temperature equivalency was adopted to predict the long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined from the process of shifting creep-curves at six temperatures. The long-term creep behaviours at three temperatures were predicted. Finally, the long-term creep test showed that the short-term creep test at identical temperatures insufficiently predicted additional creep behaviour, and the long-term test verified the horizontal shifting factors derived from the time-temperature equivalency.
      4,000원
      17.
      2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The purpose of this study was to assess the level of quality of life and related factors among the elderly in Korea. In particular, we focused on factors affecting the quality of life of the elderly in long term care. We used the third Korean National Health and Nutrition Examination Surveys (KNHANES) from 2005. We sampled a total of 3,571 (10.5%) elderly from the national survey. We compared the mean of quality of life to socioeconomic status, Activities of Daily Living (ADL), health behavior, and disease variables. We used EuroQol-5D among KNHANES to assess the quality of life. In this study, the mean score of the quality of life among the elderly was 2.57. Logistic regression showed that the elderly who were male, with spouses, with health insurance, and with good ADL levels enjoyed higher quality of life scores and odds ratios than those who were female, divorced, uninsured, and with low ADL levels (p<.05). The quality of life of the elderly was affected by socioeconomic, ADL, health behavior and disease variables. To improve long term care and the quality of life among the elderly, we need detailed research to clarify the effects of these factors.
      4,000원
      18.
      2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.
      4,200원
      1 2