검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2022.10 구독 인증기관·개인회원 무료
        Lubricant oil waste contaminated with radioactive materials generated at nuclear facilities can be disposed of as industrial waste in accordance with self-disposal standards if only radioactive materials are removed. Lubricant oil used in nuclear facilities consists of oil of 75-85% and additives of 15-25%, and lubricant oil waste contains heavy metals, carbon, glycol, etc. In addition, lubricant oil waste from nuclear facilities contains metallic gamma-ray emission radionuclides including Co-60, Cs-137 and volatile beta-ray emission radionuclides such as C-14 and H-3, which are not present in lubricant oil waste from general industries and these radionuclides must be eliminated according to the Atomic Energy Act. In general industries, the wet treatment technologies such as acid-white soil treatment, ion purification, thin film distillation, high temperature pyrolysis, etc. are used as the refining technology of lubricant oil waste, but it is difficult to apply these technologies to nuclear industrial sites due to restrictions related with controlling the generation of secondary radioactive waste in sludge condition containing radionuclides of metal components, and limiting the concentration of volatile radioactive elements contained in refined oil to be below the legal threshold. In view of these characteristics, the refinement system capable of efficiently refining and treating lubricant oil waste contaminated with radioactive materials generated in nuclear facilities has been developed. The treatment process of this R&D system is as follows. First, the moisture in the radioactive lubricant oil waste pretreated through the preprocessing system is removed by the heated evaporating system, and the beta-emission radionuclides of H-3 and C-14 can be easily removed in this process. Second, the heated lubricant oil waste by the heated evaporating system is cooled through the heat exchanging system. Third, the particulate matters with gamma-ray emission radionuclides are removed through the electrostatic ionizing system. Forth, the lubricant oil waste is stored in the storage tank and the purified lubricant oil waste is discharged to the outside after sampling and checking from the upper, middle and lower positions of the lubricant oil waste stored in the storage tank. Using this R&D system, it is expected that the amount of radioactive waste can be reduced by efficiently refining and treating lubricant oil waste in the form of organic compounds contaminated with radioactive materials generated in nuclear facilities.
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, visualization of droplet impact on hydrophobic micro-, micro/nano-textured surfaces and lubricant infused surfaces was performed. Experimental specimens were fabricated using MEMS (micro- electromechanical systems) techniques and droplet impact with pure water was visualized at various Weber number range (2 < We < 200) using a high speed camera at 8000 frames per second. Through this study it was confirmed that, various droplet impact behaviors were appeared as the Weber number was increased and the Weber number at which droplet impact behavior changes was affected by surface characteristics. Particularly, on the lubricant infused surface (LIS) after droplet impact retraction velocity is reduced by the lubricant viscosity effect during contraction process of droplet to improve the droplet deposition behavior on the surface. It was confirmed that droplet break up phenomena caused interfacial instability was slightly delayed on LIS due to the viscous dissipation effect during droplet impact process.
        4,000원
        3.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        판형 열교환기는 1920년대부터 본격적으로 상업화되었으며, 이후 판형 열교환기의 기본 컨셉은 지금까지도 거의 변화가 없었지만 고온, 고압 그리고 대용량 열교환에 적용되기 위해 설계 및 제작 방법들이 혁신적으로 발전하여 지금에 이르게 되었다. 판형 열교환기의 개발 트렌드는 전열 효율이 좋으면서 압 력강하가 낮고 또한 유체 분배가 잘되는 전열판의 개발과 일치한다. 본 연구에서는 이러한 트렌드를 만족 시키는 선박용 중속엔진 오일 냉각용 판형 쿨러 개발과 관련된 주요 과정들을 소개하고, 또한 개발된 판형 오일쿨러의 전열성능을 실험적으로 분석하여 이에 대한 결과를 제공하고자 한다. 본 연구에서 판형 쿨러는 구조적 특징으로 인해 직접 판벽 온도를 측정할 수 없어 수정된 Wilson Plot 방법을 응용하여 열전달계수를 구하였다. 오일-물 실험 전에 물-물 실험을 통해 우선 물측의 열전달계수와 압력강하량을 구하였고, 그 결과를 바탕으로 오일측의 열전달계수를 구하였다. 양측 모두 유량 증가에 따라 열전달 성능은 증가하였지 만, 압력강하량도 동시에 증가하였다. 그리고 실험을 통해 본 연구에서 개발된 판형 오일쿨러가 개발목표치를 성공적으로 달성하였음을 확인할 수 있었다.
        4,000원
        5.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 국내 엔진오일-윤활유가 배출가스에 미치는 영향에 대한 연구가 미비한 실정이며 그 실 험 방법 또한 확립되어 있지 않다. 이에 엔진을 이용한 윤활유 성상 변화가 PM(Particulate Matters) 배 출에 미치는 영향 평가방법을 수립하여 윤활유의 성상 및 열화가 자동차 성능과 환경성에 미치는 영향 을 연구하고자 한다. 윤활유 소모 및 연소로 인한 DPF(Diesel Particulate Filter) 및 후처리 장치에 미치는 영향을 평가하는 것이 중요하며, 특히 DPF의 재생과정에서 생성되는 PM(Particulate Matters)과 Ash가 DPF에 미치는 장기적인 영향과 내부 변형 및 내구성에 대한 평가와 연구가 필요하다. 본 연구에서는 정형화 되지 않은 시험모드를 개발하였으며, 내구시험결과 High SAPs의 경우 Low SAPs(Sulfated Ash, Phosphorus and Sulfuate)보다 DPF내 Ash의 축적량이 많은 것을 확인하였으며, EGR(Exhaust Gas Recycling)의 Fouling 현상 가속화에 영향을 미칠 것으로 확인하였다. 본 연구결과물을 토대로 윤활유의 기유, 첨가제, 열화 등에 따른 엔진 및 차량의 성능과 배출가스 특 성을 기술정책 자료로서 활용하도록 방향을 도모하고 시험 방법을 확립하고자 한다.
        4,500원
        6.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The coating of solid lubricant on the part of fixed or orbiting scroll wrap in a scroll compressor can not only reduce friction loss, noise & vibration and time cost for surface finishing but also improve efficiency and performance of the compressor. In this study, we found the most appropriate combination of the solid lubricant by carrying out many measurements and tests such as coefficient of friction, surface structure, the coating thickness and surface roughness for the various cases. We have come to conclusion that the most appropriate solid lubricant can be obtained by adding WS2 3% to Base(SM 3901) without any solvent and filler.
        4,000원
        7.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When gasoline car using gasoline additives and lubricant additives was running, we were able to find the characteristics which is related to noise and vibration, and also affection of emission by chassis dynamometer. The results are followed. 1) change of HC was not related to lubricant additives, it turned out that change of HC will be low, when ratio of gasoline additives is high. 2) NOx was detected to high, when ratio of lubricant additives is high. And when ratio of gasoline additives was 8.29, the data for NOx was lowest. 3) CO2 was 13.5~14% constantly, this result is not related to ratio of lubricant additives and gasoline additives. 4) Noise was not related to both of them ratio of lubricant additives and gasoline additives. But vibration was downed to 120Hz at 40km/h due to lubricant additives.
        4,000원
        8.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 μm was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.
        4,000원
        9.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We developed functional synthetic lubricant for internal combustion engine oil, which would improve engine oil performance for internal combustion engine and extend engine life. We made base oil by synthesizing nonanoic acid, 1.1.1-trimethylol propane (which has good bio-degradability) and pentaerythrytol ester. We synthesized catalyst using p-toluene sulfonic acid 0.15 wt% and coloring-prevention agent hypo-phosphorus acid 0.18 wt% at 180-190℃. Reaction temperature was increased at the rate of 10℃ for every 1 hour. When acid value reached below 3, reaction was completed. After cooling and deoxidization, we washed it by distilled water two times. After dehydration and filtering, we obtained trimethylol propane tripelargonate (TMTP) and pentaerythrytol tetrapelargonate (PETP) at yields of 96 % and 98 % respectively.
        4,000원
        10.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To provide an aqueous rust inhibitor for metalworking lubricant having low toxicity and excellent rust resistance, we synthesized diester of malonic acid by three consecutive esterifications with over 98% of conversion. This substituted malonic diester could be used as an additive to mineral oil based metalworking lubricant. These metalworking lubricant compositions were showed excellent rust resistance and suitable for various metals and different metalworking processes including hot rolling and cold rolling of aluminum and aluminum alloys.
        4,000원
        12.
        2006.04 구독 인증기관·개인회원 무료
        In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.