This study investigates the enhancement of surface precision and dimensional accuracy in STS 316L oval pipes through the application of magnetic abrasive finishing. The experiment involves the modification magnetic pole shapes(A, B, C, D) and a comprehensive analysis of their impact on surface quality. Key parameters include magnetic abrasive KX#320, iron powder, aluminum oxide, light oil, a test specimen rotating at 600rpm, and periodic injection of polishing liquid, a permanent magnet Nd-Fe-B, and magnetic pole steel 1018, reciprocating distance 20mm, and a feed rate 1mm/sec over a 32minutes duration with measurements every 4minutes. The results demonstrate significant variations in surface quality based on magnetic pole shape, with specific configurations demonstrating superior precision and smoothness from the initial surface 0.32μm to 0.06μm.
The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to 16.3oC and 14.6oC during the experiment, respectively. The average water temperature in heating pipes was 52.3oC and 45.0oC, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of 5.71~7.49W/m2 oC. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.
In the sewer pipes, reinforced concrete pipes and concrete pipes are mostly used. However, it is difficult to ensure the long-term durability of the pipe due to the corrosion of the rebar which is used for the reinforcement of the concrete. Also, reinforced concrete pipes are difficult to secure watertightness due to deterioration and corrosion by hydrogen sulfide. In order to solve such problems, research on using sewer pipes made of plastic materials is being actively conducted. When soil pressure and live load act on the buried flexible pipe, the load acting on the pipe is transferred to the surrounding soil. So, the flexible pipe will support the load with the surrounding soil together. It is difficult to predict these behaviors theoretically and clearly. Therefore, the design equation for the buried flexible pipe is analyzed by adopting theoretically idealized assumptions and it is estimated through experimental studies that it is similar to the actual structural behavior. In this paper, the mechanical properties of the soil and the polyethylene pipe were considered in application of the method proposed in ASTM D 2412 to design the buried polyethylene pipe. Also, structural behavior of the pipe resisting external loads such as soil pressure was investigated to use a polyethylene pipe as the buried pipe and the long-term behavior of the polyethylene pipe was predicted by the compaction rate of surrounding backfill soil through the field test.
In this paper, the structural characteristics of a lightweight soundproof tunnel to reduce the dead load imposed on the bridge are investigated. Subsequently, the design procedure of soundproof tunnel structures is reviewed and a design practice for the lightweight soundproof tunnel is carried out according to the reviewed procedure. Next, design compatibility for the lightweight soundproof tunnel is verified through a detailed finite element analysis. The result for evaluation of design compatibility shows that the lightweight soundproof tunnel has structural safety in structural members, welding zones and foundation parts. It is also confirmed that serviceability and buckling safety is excellent.
In this study, Hazen-Williams C value of pipes in wide waterworks system was estimated and statistically analyzed. Hazen-Williams C value of water pipe was predicted after 20 years of service period. From the results, it was found that C value of water pipe for treated water maintained higher value of 110 after 20 years of installation. Furthermore, it was found that velocity coefficients of steel pipe for less than and more than 20 years of installation were 117.7 and 109.3, respectively. C value of ductile iron pipe for less than and more than 20 years of installation were 118.1 and 114.2, respectively. In this study, it was also found that small value of C is used in the design of water pipe system. Therefore, excessively bigger size of pipe can be determined in the design of water pipe system. From the results of present study, optimum value of C can be used to avoid the oversized design of water pipe system.
This study is for a pipe cutting apparatus for use in a process of a pipe. The system refers to a novel structure comprised of a main bed, a feeder part and a cutter part. The feeder part is comprised of an AC servo motor unit, a feeding gear unit, a LM guide and a rail. The cutter part is comprised of a blade unit consisting of a blade for cutting, a AC servo motor to rotate the blade unit and a clamp unit to fix the pipe. This study proposes a mechanism of a product by designing the system and analyzes the cutting power. This study will be used as basic data for the design by analyzing the vibration and the structure
OTEC(Ocean Thermal Energy Conversion) system using the temperature difference between cooler deep and surface ocean waters is one of the renewable energy. But in Korea, OTEC system can not apply except in winter because surface sea water temperature is not enough. C-OTEC(Combined OTEC) system is that utilizes temperature difference between sea water and the condenser of power plants via working fluid. It can be a good alternative in the warm surface sea water for Mid-latitudes region like Korea. In this study, a marine survey using multi-beam echo sounder, single-beam echo sounder and sparker seismic wave is performed and sea water intake pipe line is proposed for the 10kW C-OTEC Pilot Plant.