검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 63

        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
        4,000원
        5.
        2022.12 구독 인증기관 무료, 개인회원 유료
        Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.
        4,000원
        6.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study investigated the optimum additive ratio of wheat straw pellet as a substitute for beet pulp during oyster mushroom cultivation. The chemical properties across treatments were pH of 4.8–5.5, total carbon content of 45.9–46.5%, total nitrogen content of 1.5–1.7%, and carbon-to-nitrogen ratio of 27.8–31.0. Mycelial growth was the fastest in a medium containing 20% wheat straw pellet (at 88.2 mm in ‘Heuktari’ and 70.3–79.6 mm in ‘Suhan-1Ho’); however, there were no significant differences in mycelial density among the treatments. The characteristics of fruiting bodies by variety were as follows. In ‘Heuktari’, the valid stipe number per bottle (1,100 cc) was 22.5 and yield was 177.1 g/1,100 cc in the mixed medium containing 10% wheat straw pellet, with the values being comparable to those of controls. In ‘Suhan-1Ho’, the valid stipe number per bottle (1,100 cc) was 14.0 and yield was 151.2 g/1,100 cc in the mixed medium containing 10% wheat straw pellet, with the values being comparable to those of controls.
        3,000원
        7.
        2020.12 구독 인증기관 무료, 개인회원 유료
        Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to twodimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics of dental pulp stem cells.
        4,000원
        8.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The possibility of orange pulp utilization for nanoporous carbons production was investigated. Moreover, processing the obtained materials as limonene oxidation catalysts was studied as well. Limonene was separated from orange pulp obtained from fragmented orange peels—the waste from industrial fruits processing—by means of simple distillation. After the separation of limonene from the biomass, the dried orange pulp was converted to three types of nanoporous carbon catalysts: without activating agent, with NaOH, and with KOH. The catalysts were characterized by XRD, SEM, EDX, AFM, and sorption of N2 methods. The activities of the obtained catalysts were tested in the oxidation of limonene to perillyl alcohol (the main product), carveol, carvone, and 1,2-epoxylimonene and its diol. In the oxidation processes, hydrogen peroxide was used as the oxidizing agent. This work has shown for the first time that nanoporous carbons obtained from orange pulp waste, after separation of limonene, are active catalysts for limonene oxidation to industrially important value-added products.
        4,000원
        9.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Telomeres are known as a specialized region in the end of chromosomes to protect DNA destruction, but their lengths are shortened by repetition of cell division. This telomere shortening can be preserved or be elongated by telomerase and TERT expression. Although a certain condition in the cells may affect to the cellular and molecular characteristics, the effect of differentiation induction to telomere length and telomerase activity in mesenchymal stem cells (MSCs) has been less studied. Therefore, the present study aimed to uncover periodical alterations of telomere length, telomerase activity and TERT expression in the dental pulp-derived MSCs (DP-MSCs) under condition of differentiation inductions into adipocytes and osteoblasts on a weekly basis up to 3 weeks. Shortening of telomere was significantly (p < 0.05) identified from early-middle stages of both differentiations in comparison with undifferentiated DP-MSCs by non-radioactive chemiluminescent assay and qRT-PCR method. Telomere length in undifferentiated DP-MSCs was 10.5 kb, but the late stage of differentiated DP-MSCs which can be regarded as the adult somatic cell exhibited 8.1-8.6 kb. Furthermore, the relative-quantitative telomerase repeat amplification protocol or western blotting presented significant (p < 0.05) decrease of telomerase activity since early stages of differentiations or TERT expression from middle stages of differentiations than undifferentiated state, respectively. Based on these results, it is supposed that shortened telomere length in differentiated DP-MSCs was remained along with prolonged differentiation durations, possibly due to weakened telomerase activity and TERT expression. We expect that the present study contributes on understanding differentiation mechanism of MSCs, and provides standardizing therapeutic strategies in clinical application of MSCs in the animal biotechnology.
        4,000원
        10.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.
        4,000원
        11.
        2018.11 구독 인증기관·개인회원 무료
        This study was conducted to investigate effect of feeding beet pulp on reproductive performance, colostrum composition and microbiological characteristics in sows. A total of 12 sows(Landrace×Yorkshire) were randomly allotted three dietary treatments at gestating 90 days. The diets were prepared by adding 0, 5 and 10% of the beet pulp in basal diets. The pigs fed 5% beet pulp showed higher litter size than the 0 and 10% beet pulp treatments, although there was not significant among the treatments. Similarly, birth and 21days weight in piglet were not different among the treatments. In colostrum fat, protein, lactose, citric acid, solid, ffa, true protein were ranged to reference values, but not difference among the treatments. E.coli of feces was lower(P<0.01) in the 5% beet pulp than the 0 and 10% beet pulp treatments. But no effect was observed on Lactobacilli of feces among dietary treatments. These our results indicate the beet pulp has no significant effect of reproductive performance and colostrum composition in sows. But, 5% level beet pulp is effective for reduction of intestinal pathogenic microorganisms.
        12.
        2018.09 구독 인증기관 무료, 개인회원 유료
        There exists very little information on the ultrastructure of substance P immunopositive (+) fibers in the human dental pulp, which may help in understanding the mechanism for substance P associated pulpal inflammatory pain. To address this issue, we investigated the presence of substance P+ fibers in the human dental pulp by light- and electron-microscopic immunohistochemistry. Light microscopy revealed that substance P+ fibers ran within neurovascular bundles in the radicular pulp and in the core of coronal pulp. They were also frequently present in the peripheral pulp. Substance P+ fibers showed beads like swellings interconnected by thin axonal strand, in a manner similar to bouton en passants and interconnecting axonal strand in the spinal cord. Electron microscopy revealed that almost all the substance P+ axons were unmyelinated. The axonal swellings of the substance P+ contained numerous clear round vesicles (40-50 nm in diameter) and many large dense-cored vesicles (80-110 nm in diameter) as well as many mitochondria. The vesicles and mitochondria were rarely observed in the thin axonal strand interconnecting the swellings. Intimate interrelationship or synaptic structure between the swellings of substance P+ axon and nearby pulpal cells or axons was not found. These findings suggest co-release of substance P and glutamate from the substance P+ pulpal axons and its action on nearby structures in a paracrine manner.
        4,000원
        13.
        2018.06 구독 인증기관 무료, 개인회원 유료
        The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.
        4,000원
        14.
        2017.12 구독 인증기관 무료, 개인회원 유료
        Transient receptor potential melastatin 8 (TRPM8) plays a crucial role in innocuous cool sensation, acute cold pain and cold-induced hyperalgesia during pathologic conditions. To help understand TRPM8-mediated cold perception in the dental pulp and periodontal tissues, we examined the distribution of TRPM8-immunopositive (+) axons in molar and incisor pulp and periodontal tissues using transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. In the radicular pulp of the molar teeth, a small number of TRPM8+ axons were observed. TRPM8+ axons branched frequently and extensively in the core of coronal pulp, forming a network in the peripheral pulp. Some TRPM8+ axons ascended between odontoblasts and were observed in the dentinal tubule. TRPM8+ axons were linear-shaped in the radicular pulp, whereas many TRPM8+ axons showed portions shaped like beads connected with thin axonal stands at the peripheral pulp. TRPM8 was densely expressed in the bead portions. In the incisor pulp, TRPM8+ axons were occasionally observed in the core of the coronal pulp and rarely observed at the peripheral pulp. TRPM8+ axons were occasionally observed and showed a linear shape rather than a bead-like appearance in the periodontal ligament and lamina propria of the gingival tissue. These findings, showing differential distribution of TRPM8+ axons between radicular and coronal portions of the molar pulp, between incisor and molar pulp, and between dental pulp and periodontal tissues, may reflect differential cold sensitivity in these regions.
        4,000원
        15.
        2017.12 구독 인증기관 무료, 개인회원 유료
        Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) plays a key role in development and progression of inflammatory responses and Porphyromonas gingivalis is a common endodontic pathogen. In this study, we investigated induction of COX-2 and PGE2 by P. gingivalis in human dental pulp cells (HDPCs). P. gingivalis increased expression of COX-2, but not that of COX-1. Increased levels of PGE2 were released from P. gingivalis-infected HDPCs and this PGE2 increase was blocked by celecoxib, a selective COX-2 inhibitor. P. gingivalis activated all three types of mitogen-activated protein kinases (MAPKs). P. gingivalis-induced activation of nuclear factor-κB (NF-κB) was demonstrated by the results of phosphorylation of NF-κ B p65 and degradation of inhibitor of κB-α (IκB-α). Pharmacological inhibition of each of the three types of MAPKs and NF-κB substantially attenuated P. gingivalisinduced PGE2 production. These results suggest that P. gingivalis should promote endodontic inflammation by stimulating dental pulp cells to produce PGE2.
        4,000원
        16.
        2017.11 구독 인증기관·개인회원 무료
        제지공정 폐수 내에 포함된 리그닌을 재사용하기 위해 같이 포함되어있는 금속이온을 줄여야한다. 본 연구에서는 세라믹 분리막을 이용하여 제지공정 폐수 내의 금속이온을 제거하는 연구를 진행하였다. 분리막은 DMAc 용매에 PESf 고분자를 용해시킨 뒤 α-Alumina 분말을 넣고 PVP 분산제를 첨가하여 평판형 분리막을 제조하였다. FE-SEM으로 분리막의 단면과 표면을 관찰하고 CFP (Capillary Flow Porometer)장치를 통해 기공크기를 측정하였다. 분리막을 이용 한 금속이온제거 실험을 한 뒤 실험 전, 후의 폐수를 ICP-MS분석을 통해 금속 이온량을 측정하였다.
        17.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the effect of bisphosphonate on the osteoblastic differentiation of human dental stem cells (hDPSCs). In the first experiment, we evaluated the effect of bisphosphonate on the differentiation of hDPSCs into osteoblasts by alkaline phosphatase staining after culturing hDPSCs. As a result, on day 13, the osteogenic differentiation of hDPSC was suppressed at 5 μM in clodronate and 2 μM in zolendronate. In NBP, osteogenic differentiation is more suppressed. In second experiment, cytotoxicity and proliferation test, the cell proliferation (examined by MTT assay) was more suppressed as the concentrations of zolendronate were larger than those of alendronate and clodronate. Western blotting, a third experiment, was found that AKT phosphorylation was inhibited in cell signaling proteins involved in cell proliferation inhibition and death by bisphosphonate concentration. In human dental stem cells, bisphosphonates inhibit osteoblast differentiation, and this phenomenon is clearly observed in NBPs (zolendronate), and it has been found that it is related to AKT phosphorylation of cell signaling proteins.
        4,000원
        18.
        2017.09 구독 인증기관 무료, 개인회원 유료
        Although anti-aging activities of melatonin, a hormone secreted by the pineal gland, have been reported in senescence-accelerated mouse models and several types of cells, its impact and mechanism on the senescence of human dental pulp cells (HDPCs) remains unknown. In this study, we examined the impact of melatonin on cellular premature senescence of HDPCs. Here, we found that melatonin markedly inhibited senescent characteristics of HDPCs after exposure to hydrogen peroxide (H2O2), including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive HDPCs and the upregulation of p21 protein, an indicator for senescence. In addition, as melatonin attenuated H2O2-stimulated phosphorylation of c-Jun N-terminal kinase (JNK), while selective inhibition of JNK activity with SP600125 significantly attenuated H2O2-induced increase in SA-beta-gal activity. Results reveal that melatonin antagonizes premature senescence of HDPCs via JNK pathway. Thus, melatonin may have therapeutic potential to prevent stress-induced premature senescence, possibly correlated with development of dental pulp diseases, and to maintain oral health across the life span.
        4,000원
        19.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pulp and paper industry produces large volumes of wastewater and residual sludge waste, resulting in many issues in relation to wastewater treatment and sludge disposal. Contaminants in pulp and paper wastewater include effluent solids, sediments, chemical oxygen demand (COD), and biological oxygen demand (BOD), which should be treated by wastewater treatment processes such as coagulation and biological treatment. However, few works have been attempted to predict the treatment efficiency of pulp and paper wastewater. Accordingly, this study presented empirical models based on experimental data in laboratory-scale coagulation tests and compared them with statistical models such as artificial neural network (ANN). Results showed that the water quality parameters such as turbidity, suspended solids, COD, and UVA can be predicted using either linear or expoential regression models. Nevertheless, the accuracies for turbidity and UVA predictions were relatively lower than those for SS and COD. On the other hand, ANN showed higher accuracies than the emprical models for all water parameters. However, it seems that two kinds of models should be used together to provide more accurate information on the treatment efficiency of pulp and paper wastewater.
        4,000원
        20.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To gain insights into the role of purinergic receptors in human dental pulp cells (hDPCs) differentiation, we characterized the expression and functional activity of P2Y1 receptors and investigated the effects of ADP on the proliferation and differentiation of this pulp stem-like cell population. Our data showed that ADP did not induce cell proliferation to expose the various ADP concentrations for 72 hours, but the proliferative capacity of hDPCs was inhibited at higher ATP concentrations (100 μM). Using RT-PCR analysis, we found that ADP induced several P2Y receptors including P2Y1 as well as odontoblastic differentiation genes, dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) in a dose-dependent manner. The effects of ADP on the expression of DMP-1 and DSPP mRNA were prevented by the P2Y1 antagonist MRS2179. The extracellular matrix calcium deposits were clearly observed in ADP-treated hDPCs by alizarin red S staining. Quantitative measurement of mineralization induced by ADP was significantly inhibited in MRS2179-treated hDPCs. These results may provide new insights into the molecular regulation of the differentiation of hDPCs.
        4,000원
        1 2 3 4