검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 104

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        2.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 °C. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Refined structured tin dioxide gets the amount of attraction because of its low cost and stability. The C@SnO2 nanospheres with mesoporous structures were produced using the hard template method in this work. The C@SnO2 is primarily gained attributed to the dehydration condensation of C6H12O6 and the hydrolysis of SnCl4 ·5H2O. The morphology of the C@SnO2 was analyzed by physical characterization and the diameter of the obtained C@SnO2 was around 138 nm. When C@SnO2 was applied to lithium-ion batteries as anode material, it performed outstanding electrochemical properties, with a capacity of 735 and 539 mA h g− 1 maintained at 1000 and 2000 mA g− 1, respectively. Furthermore, it exhibits favorable discharge/ charge cycle stability. This is probably because of the more chemically redox active sites provided by C@SnO2 nanocomposites and it also allows fast ion diffusion and electron migration.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.
        4,000원
        6.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
        4,000원
        7.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 oC under moisture removal conditions and at 300 oC and 500 oC for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 oC showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 oC required a low operating voltage. As a result, the 100 oC heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.
        4,000원
        8.
        2022.05 구독 인증기관·개인회원 무료
        The lattice thermal expansion of zirconium-based samples containing tin, niobium, and iron elements at a temperature range of 30–870°C with intervals of 40°C was studied by in situ hightemperature X-ray diffraction (HT-XRD). The a- and c-axes lattice constants of the hexagonal Zr crystal structure for the zirconium-based samples were calculated by Pawley refinement using the in situ HT-XRD spectra. The a-axis lattice parameters for the zirconium-based samples with tin element overall decreased, whereas those for the samples containing niobium or iron elements are not declined, as compared to those for a pure zirconium sample. It suggests that the lattice thermal expansion along the a-axis direction of the hexagonal Zr crystal structure for zirconium-based samples was suppressed by the tin element. This effect is the greatest when the content of tin element added in zirconiumbased sample is 3wt%. On the other hand, the c-axis lattice parameters for all the zirconium-based samples overall increase as compared to the pure zirconium, indicating no suppression effect by tin, niobium, and iron elements, in contrast to the a-axis lattice constants.
        9.
        2022.05 구독 인증기관·개인회원 무료
        Tin slag is a byproduct obtained from the tin smelting industry and contained naturally occurring radioactive material (NORM); therefore, it has to be managed accordingly. This study focuses on recycling the waste in exchange for natural aggregates for road pavement due to the potential features as construction materials. The main objective of this study is to analyze the use of tin slag by diluting its radioactivity level and as the replacement of natural aggregates while focusing on identifying the mechanical properties of the mixture. Tin slag was used as coarse aggregate in the range of 0–85% while the percentage of recycle glass was maintained at 15% and granite rocks in range of 0–100%. In this research, the concentration activity of NORM in tin slag have been measured using a gamma ray spectrometer. Few laboratory tests for the final product are carried out such as Los Angeles abrasion value (LAAV), aggregate crushing value (ACV), and aggregate impact value (AIV). This study was also conducted to analyze the leachability of As, Cd, Ba, Cr, Pb, Se and Ag from the different composition. From the measurement result, the average concentration of 226Ra, 232Th and 40K are 318.21 Bq·kg−1, 602.07 Bq·kg−1 and 89.84 Bq·kg−1, respectively. The outdoor dose rates were found to be lower than 1.5 mSv·yr−1 in sample A1, A2 and A3 which is the recommended limit for construction materials. The sample toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) and the concentration of the elements studied was analysed using ICP-MS. The result from the analysis indicated that the concentrations of the heavy metal elements were between 0.001–26.94 mg·kg−1, which is lower than the limit for each element. As a conclusion, addition of tin slag between 5 to 25% in exchange of granite rocks as road pavement have showed potential evidence in the test for construction material. Besides, it has low leachability to the environment while diluting the radioactivity level.
        10.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0–8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ballmilled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.
        4,000원
        11.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-situ carbon-coated tin oxide (ISCC-SnO2) was fabricated by colloidal processing and sucrose was used as a soluble carbon source. ISCC-SnO2 was characterized by X-ray diffraction (XRD), Raman spectroscopy, and nitrogen adsorption–desorption by BET methods, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) properties of ISCC-SnO2 were investigated in 1 M Na2SO4 solution. The specific capacitance of ISCC-SnO2 was achieved 42.7 mFcm−2 at a scan rate of 25 mVs−1 and showed excellent charge–discharge behavior.
        4,000원
        12.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.
        4,000원
        14.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the γ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.
        4,000원
        15.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites of carbon nanotube (CNT) supported by Sn-doped MnO2 with enhanced capacitance have been fabricated with varying dopant concentrations. The composites have been subjected to physiochemical, configurational, and morphological analyses by FTIR, UV–Vis spectroscopy, X-ray diffraction and field emission scanning electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction studies. The electrochemical performance of the composite has been evaluated by cyclic voltammetry and charge/discharge techniques. Highest specific capacitances of 940 F g−1 at a current density of 0.35 A g−1 and 927 F g−1 at 5 mV s−1 in 1 M Na2SO4 electrolyte solution was achieved in the case of 5% Sn doped composite. Moreover, the electrode demonstrated good cycling performance and retaining 79.7% of the initial capacitance over 3000 cycles. The superior electrochemical performance is accredited mainly to the porous sheath hierarchical architecture, which consist of inter connected MnO2 nanoneedles uniformly coated over the CNT surface. This peculiar architecture is responsible for fast ion/electron transfer and easy access of the active material.
        4,200원
        16.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are 110 oC and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95% according to the test time and conditions.
        4,000원
        17.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of 847 mAh g−1. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.
        4,000원
        18.
        2018.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.
        4,000원
        19.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/ SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below 350℃. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and H2O increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., Al2O3) that can sufficiently prevent the diffusion of impurities into the channel.
        4,000원
        20.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of H2S gas.
        4,000원
        1 2 3 4 5