검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 327

        261.
        2011.02 서비스 종료(열람 제한)
        교량기초에서 발생하는 국부세굴에 의한 교량의 안전성 문제에서 필연적으로 내재될 수 밖에 없는 임의성(randomness), 불확실성(uncertainty)을 고려하기 위해 기존의 결정론적 접근방법에서는 주로 경험에 입각한 안전계수를 사용하여 여유강도를 두어 이론상 파괴의 위험이 없는 것으로 가정하지만, 실제 현실에서는 종종 그러한 가정에 모순이 발생한다. 이에 반해 불확실성 자체를 정량적으로 고려하는 신뢰성 이론에서는 작지만 0이 아닌 파괴의 가능성을 고려하여 안전성 평가를 수행하는 것이 기존의 결정론적 방법과 다른 점이라고 할 수 있다. 본 연구에서는 교각주위 국부세굴에 의한 교량의 신뢰성 해석에서 한계상태방정식을 결정할 수 없는 경우 적용가능한 응답면 기법을 인공신경망을 이용하여 신뢰성 해석을 수행하였으며 Johnson(1992)의 Monte Carlo 방법과 비교하여 적용성을 검토하였다.
        262.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        수문학적 예측에 있어서 강우수치예보의 활용성을 제고하기 위하여 인공신경망을 이용한 정량강수예측기법을 제시하였다. 본 연구에서는 2001년 6월과 7월, 2002년 8월의 중규모수치예보자료와 AWS의 3시간 누적강수, 상층기상관측소에서의 가강수량과 상대습도, 각 선행시간별 강수발생확률을 이용하여 각 선행시간에 따른 강수량을 예측하였다. 강수는 대기변수의 물리적 비선형조합으로 발생하기 때문에 강수에 영향을 미치는 대기변수와 관측강수사이의 비선형관계를 고려하
        263.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.
        264.
        2011.02 서비스 종료(열람 제한)
        홍수예경보는 강우로 인하여 발생되는 홍수의 규모와 시간을 가능한 한 정확하고 빨리 예측하여 홍수에 대비할 수 있도록 유관기관 및 지역주민에게 사전에 홍수에 관한 정보 즉 예측되는 수위와 시간을 제공함으로써 홍수로부터의 피해를 최소화하는 것이다. 이와 같은 목적을 성공적으로 완수하기 위해서는 홍수시 급변하는 하천유량에 영향을 미치는 모든 수문학적 기상학적 자료를 신속·정확하게 수집할 수 있는 관측 시스템의 구축 뿐 아니라 이들 수집된 자료를 이용하여 실시간 홍수추적을 할 수 있는 효율적인 유출량 계산모형이 조화를 이룰 때 가능하다. 이에 본 연구에서는 중·소하천에서 홍수예경보를 위한 지능형 U-River 시스템의 실시간 모니터링 기술을 조사하고 예측시스템에 대해 연구하였다. 기존의 홍수예경보의 문제점을 해결하기 위해 간단한 입력자료만으로 홍수예측이 가능한 인공지능 기반의 신경망 모형을 이용 하였으며 예측 모형의 효율성과 적용성을 높이기 위해 유사한 수문 사상을 가지는 상·하류간 입력 자료를 동시에 사용하였다. 모델의 수행은 각 지점별 훈련성과를 토대로 최적의 은닉층 노드수를 선발하여 실시간 수위예측에 활용하였으며 수치적 기준을 적용하여 실측 수위와 모형에 의해 예측된 수위를 이용하여 평가하였다.
        265.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        한 구조물이 손상을 입으면 그 구조물의 동적응답(고유진동수, 가속도, 변형률)이 변하게 된다. 이와 같이 변하는 동적응답을 응답신호로 계측하고 이들 데이터를 신경망에 적용하여 구조물의 손상을 평가하는 방법이 신경망손상평가법이다. 현재까지 정형화된 특정한 경우의 연구가 주로 이루어져 있지만 일반적인 신경망손상평가법의 특성에 관한 연구나 실용 가능성과 장단점에 관한 충분한 연구가 부족하다. 따라서 본 연구는 신경망에 다양한 동적응답을 적용하는데 있어 신경망손상평가법의 일반적인 특성과 적용의 문제점을 연구하였다. 신경망손상평가법은 일정한 가진력을 손상이 있는 구조물에 가하고 그로부터 얻은 응답신호를 이용하여 신경망을 학습을 시킨 후, 임의의 손상이 있는 구조물에 동일한 가진력을 가하여 얻은 응답신호를 이용하여 손상의 위치와 정도를 찾는 것이 현재까지의 연구였다. 그러나 일반적으로 구조물에 작용하는 가진력은 일정하지 않다. 따라서 동일한 가진력에 의해 학습된 신경망에 가진력의 변화가 있는 경우에도 손상을 파악하는지 평가하였다. 모든 응답신호는 모형실험을 통하여 획득하였다.
        266.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이
        267.
        2010.01 KCI 등재 서비스 종료(열람 제한)
        본 연구는 인공신경망의 성능을 향상시키기 위한 여러 가지 방법들 중의 하나인 입력변수 선정기법에 관한 연구로서, 일반적으로 널리 사용되고 있는 상관계수를 이용한 입력변수 선정기법 외에 상호정보량을 활용한 방법을 적용하여 인공신경망의 성능을 향상시키고자 하였다. 대상자료는 기상청에서 제공하는 RDAPS자료의 152개 출력값으로 지상강우량의 예측값인 APCP를 포함하고 있으며, 강우관측값간의 상호정보량을 구해 가장 영향력이 큰 변수를 입력변수로 사용하였다.
        268.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        Development of an artificial neural network model was presented to predict the daily maximum SO2 concentration in the urban-industrial area of Ulsan. The network model was trained during April through September for 2000-2005 using SO2 potential parameters estimated from meteorological and air quality data which are closely related to daily maximum SO2 concentrations. Meteorological data were obtained from regional modeling results, upper air soundings and surface field measurements and were then used to create the SO2 potential parameters such as synoptic conditions, mixing heights, atmospheric stabilities, and surface conditions. In particular, two-stage clustering techniques were used to identify potential index representing major synoptic conditions associated with high SO2 concentration. Two neural network models were developed and tested in different conditions for prediction: the first model was set up to predict daily maximum SO2 at 5 PM on the previous day, and the second was 10 AM for a given forecast day using an additional potential factors related with urban emissions in the early morning. The results showed that the developed models can predict the daily maximum SO2 concentrations with good simulation accuracy of 87% and 96% for the first and second model. respectively, but the limitation of predictive capability was found at a higher or lower concentrations. The increased accuracy for the second model demonstrates that improvements can be made by utilizing more recent air quality data for initialization of the model.
        269.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        바둑에 있어 사활문제는 컴퓨터 바둑을 구현하기 위해 반드시 극복해야 하는 기본적인 문제이다. 사활문제와 같은 국부적인 바둑 문제를 해결하기 위하여 고려해야 될 중요한 사항은 게임 트리의 엄청난 분기수와 그 깊이를 어떻게 처리하느냐이다. 본 논문에서 수행된 실험의 기본 착상은 둘러싸인 돌들을 죽이기 위해 인식된 첫 수들을 찾아내는 인간의 습성을 모방한 것이다. 바둑에 있어, 유사한 사활문제(패턴)들은 자주 유사한 해들을 갖는다. 유사한 패턴을 분류 하기 위하여 코호넨 신경망(KNN)을 기반으로 한 군집화를 수행하였으며, 실험 결과는 고무적이며 사활문제를 풀기 위해 신경망으로 통제 학습을 사용하는 패턴 일치와 경쟁할 수 있음을 알아냈다.
        270.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        선박의 접안운동을 자동화하기 위하여 인공신경망(Artificial Neural Network, 이하 ANN)에 의한 제어를 수행하였다. ANN은 시스템의 비선형성이 표현 가능하므로 접안운동과 같은 비선형성이 강한 조종운동에 적합하다. 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 다층 인식자(Multi-layer perceptron)를 사용하였고, 교사 데이터(Teaching data)와 역전파(Back-Propagation) 알고리즘을 사용하여 신경망의 출력값과 목표 출력값 사이의 오차가 최소가 되도록 신경망 학습을 수행하였다. 접안 시 저속조종 수학모델을 사용하여 접안 시뮬레이션을 수행하였으며, ANN의 입력층 성분(unit)이 8개인 구조와 6개인 구조의 접안 제어를 비교하였다. 시뮬레이션 결과, 두 ANN에 의하여 접안 경로 선택에 차이가 나타났으나 접안 조건은 모두 만족하였다.
        271.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추
        272.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        하도내에서 발생하는 유출량 및 TOC 자료는 비선형성이 강한 자료임에 따라 홍수에 대한 재난대응과 수질의 상시감시를 위해서는 자료의 특성 분석과 예측에 관한 연구는 필수라 할 수 있다. 따라서 본 연구에서 유출량 및 TOC, TOC부하량 자료에 대한 웨이블렛 변환에 의해 최종분해된 최종파형분해단계의 근사성분과 상세성분을 이용하여 예측모형을 개발하였다. 그 결과 기존 인공신경망 모형에서 관찰되었던 시계반대 방향으로 전이되는 지속현상의 극복 가능성을 보여주
        273.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        인공신경망 이론을 이용하여 강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구들은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 이와 같은 패턴분류를 위한 SOM(Self-Organizing Map: SOM)의 연구 결과를 검토해보면 SOM 훈련을 위한 지도크기 및 배열의 결정은 SOM 성능에 큰 영향을 미치는 것으로 보고되고 있으나 지도크기 결정시 지도의 종방향 크기와 횡방향 크기를
        274.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        In this study, we implemented landslide distribution of Jeju Island using ANN and GIS, respectively. To do this, we first get the counter line from 1:2,5000 digital map and use this counter line to make the DEM. for the evaluate the land slide susceptibility. Next, we abstracted slop map and aspect map from the DEM and get the land use map using ISODATA classification method from Landsat 7 images. In the computation processes of landslide analysis, we make the class to the soil map, tree diameter map, Isohyet map, geological map and so on. Finally, we applied the ANN method to the landslide one and calculated its weighted values. GIS results can be calculated by using Acrview program and produced Jeju landslide susceptibility map by usign Weighted Overlay method. Based on our results, we found the relatively weak points of landslide ware concentrated to the top of Halla mountains.
        275.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        풍화토 사면은 장시간 공기에 노출되거나 물과 접촉을 하게 되면 전단강도가 급격히 저하되며 계절에 따른 수위의 변화가 매우 큰 댐사면의 경우는 강도저하가 더욱 크게 발생한다. 풍화토 사면의 강도저하 파악을 위하여 반복전단시험 및 수침․건조를 반복한 시료에 대한 잔류강도 시험을 통해 포화에 따른 강도의 저하를 파악하였다. 또한 소형동적콘관입시험기를 이용하여 관입타격횟수와 전단강도정수관계를 파악하고 인공신경망 해석을 통하여 관입타격횟수 Nc를 이용한 전단강도정수의 예측이 용이하도록 상관식을 구성하였다.
        276.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulator's human's superior motor skills in contact tacks.This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG)signals and limb position measurements. The EMG signal is the summation of MUAPs(motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN)model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.
        277.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
        279.
        2007.05 KCI 등재 서비스 종료(열람 제한)
        논문에서는 구조물의 건전성 평가를 위하여 지진하중을 받은 프레임 구조물의 응답 가속도를 웨이블렛펙킷 변환(Wavelet Packet Transform; WPT)을 이용하여 분해한 후 인공신경망을 이용하여 각 부재의 손상도를 평가하였다. 인공신경망에는 응답가속도의 분해된 성분 중 에너지가 가장 큰 5개의 성분이 입력 값으로 사용 되었는데 인공신경망의 출력층에 있는 2개의 노드는 각각 손상된 부재와 손상도를 나타낸다. 이 논문에서 제시된 방법을 이용하여 구조물의 손상된 부재와 손상도를 평가하였고 만족스러운 결과를 얻었다.
        280.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        구조 재료와 시공기술의 발달로 구조물은 높고 길게 설계할 수 있게 되었으나, 그에 따른 진동문제와 사용성에 관한 문제가 발생하였고, 구조물의 과다한 변위는 구조물에 심각한 손상을 발생시켰다. 이러한 구조물의 진동 문제를 해결하기 위하여 본 논문에서는 구조물의 상태벡터와 제어력만으로 구성된 훈련패턴을 기본으로 하여 인공신경망이론과 확률신경망이론을 사용하여 구조물의 진동을 능동제어하는 방법을 제안하였다. 구조물의 제어를 위해 LQR 제어알고리즘을 이용하여 구조물의 상태벡터와 제어력을 구한 후, 상태벡터를 입력으로 제어력을 출력으로 하는 인공신경망과 확률신경망의 훈련패턴을 구성하였다. 제안된 방법을 사용하여 Northridge 지진하중을 받는 3층 빌딩구조물을 제어하였고, 제안된 인공신경망과 확률신경망의 제어 결과를 비교하였다.