본 연구는 밀폐형 식물생산 시스템에서 다양한 형광등 종류에 따른 시금치 ‘수시로’의 생육과 기능성물질 함량에 미치는 영향을 구명하기 위해 수행되었다. 종자는 128구 플러그 트레이에 암면을 이용하여 파종되었다. 시금치 묘는 재순환 담액식 수경재배 시스템을 이용하여 EC 1.5dS·m-1, pH 6.5의 밀폐형 식물생산 시스템에 정식되었다. 묘는 3가지 종류의 형광등 #S(NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O( FHF32SSEX-D, Osram Co. Ltd., Germany), #P(FLR32SS EX-D, Philips Co. Ltd., The Netherlands)에 광도 150μmol·m-2·s-1 PPFD와 광주기 14/10 (명기/암기)으로 설정했다. 정식 후 재배환경은 온도 25±1oC와 상대습도 60±10% 였다. 정식 후 6주간 각 처리마다 30개체를 재배하였고, 생육 및 기능성 물질 함량을 3주째와 6주째 측정했다. 정식 후 3주째, #O 형광등에서 다른 처리구에 비해 초장과 엽폭이 유의적으로 컸다. 그러나 지하부의 생체중과 건물중은 #P 형광등에서 가장 높았다. 또한 총페놀 함량은 #P 형광등에서 유의적으로 가장 높았다. 정식 후 6주째, #O 형광등에서 초장, 지상부의 생체중 및 건물중에서 시금치의 생육이 향상되는 효과를 보였다. 총페놀 함량도 #O 형광 등에서 다른 처리구에 비해 유의적으로 증가하였다. 그러나 항산화 활성은 모든 처리구에서 유의적인 차이를 나타내지 않았다. 따라서 이러한 결과는 밀폐형 식물생산 시스템에서 #O 형광등 처리가 시금치의 생육과 기능성물질 함량 축적에 효과적인 것으로 나타났다.
콘크리트 기층에 아스팔트 표층의 복합포장 구조에서 온도변화에 따른 반사균열의 거동은 반사균열 억제 및 제어에 중요한 정보로 작용한다. 반사균열의 주요 발생원인 중 포장의 온・습도 변화에 따른 하부 콘크리트의 수평 거동 및 컬링에 의한 줄눈/균열부 수직 거동은 포장의 특성(콘크리트 열팽창계수, 하부마찰계수, 포장두께 등)과 지역환경(대기의 온도, 상대습도, 태양 복사량 등)에 따라 다른 특성을 보인다. 본 연구에서는 롤러전압 콘크리트 기층에 배수성 아스팔트 표층의 복합포장 구조에서 현장의 온도변화에 따른 반사균열의 거동 특성을 분석하였다. 늦가을(11월 초)에 5cm 두께 배수성 아스팔트 덧씌우기 포장을 롤러전압 콘크리트 기층 상부에 시공하였다. 온도 조사는 표층 아스팔트 상/하부와 기층 콘크리트 상/하부, 대기온도를 계측하였다. 롤러전압 콘크리트 기층의 균열은 1년의 공용기간 동안 약 30m의 일정 간격으로 발생하였으며, 계측한 연속된 3개 균열의 움직임은 안정화되어 온도에 따라 유사한 거동을 보였다. 계측결과, 겨울철 온도에 따른 줄눈거동은 그림 1과 같다. 영하권의 겨울철 포장의 온도는 태양의 복사열과 기층하부의 지열로 인하여 대기온도보다 높았다. 표층 시공 후 큰 폭의 온도 저감이 발생한 이후 반사균열이 발생하였고 그림 2는 반사균열 발생 전・후의 1일 온도차에 따른 1일 균열 폭 변화량을 보인다. 추세곡선의 기울기는 온도변화에 따른 균열 거동에 저항하는 크기를 나타낸다. 두 곡선의 기울기 차인 0.008은 5cm 두께의 배수성 표층의 반사균열에 대한 저항 특성치임을 알 수 있다. 아스팔트 표층 반사균열 발생 전・후의 추세 곡선간 y축 절편의 차는 반사균열 발생에 따른 동일 온도변화에서 균열 거동량의 증가분을 나타낸다. 향후 배수성 표층 복합포장의 계절별 거동특성을 분석하여 복합포장 설계검토에 활용할 계획이다.
본 연구는 시설딸기 ‘매향’의 생육과 런너 생산을 위한 생장조절제의 처리방법과 농도의 효과를 조사하기 위해 수행되었다. 딸기 묘를 2016년 2월 22일에 상업용 혼합 상토(토실이)를 이용하여 딸기 재배 포트(64×27×18cm)에 정식하였다. 생장조절제인 6-benzylaminopurine을 이용하여, 정식 후 3주째에 농도를 900, 1,200, 1,500mg·L-1로 제조하여 식물체당 50mL씩 각각 엽면살포와 배지관주하였다. 양액의 공급은 EC 수준을 0.65dS·m-1로 맞추어 뿌리 활착을 위해 충분히 공급하였다. 뿌리 활착 후에는 배양액의 1회 공급량을 딸기 재배 포트 당 450mL로 하루 2회(10분)씩 공급하였다. ‘매향’ 딸기 모주의 초장과 크라운 직경은 유의적인 차이를 나타내지 않았다. 근장, 1차 근수, 엽장, 엽폭, 엽면적, 지상부와 지하부의 생체중과 건물중과 같은 다른 생육 특성은 생장조절제를 처리 하지 않은 대조구에서 유의적으로 높은 값을 나타냈다. 그리고, 딸기의 SPAD 값은 900mg·L-1의 배지관주에서 44.2로 가장 높은 값을 나타냈다. 엽면살포 처리는 배지 관주 처리보다 런너 생산에 효과적이었으며, 900과 1,500mg·L-1 처리에서 런너 수가 가장 많았다. 반면에, 자묘 수는 엽면살포보다 배지관주에서 효과적이었다. 결과적으로, 시설딸기 ‘매향’의 생육과 런너 수는 900mg·L-1의 농도로 엽면살포한 처리에서 가장 효과적인 것으로 나타났다.
서론: 최근 콘택트렌즈의 사용이 증가하고 특히 미용 목적의 콘택트렌즈의 사용빈도가 높아짐에 따라 굴절이상 교정용 콘택트렌즈 착용 시의 부작용과 더불어 미용용 콘택트렌즈에서의 착색에 의한 문제점도 부각되고 있다. 따라서 본 연구는 국내에서 생산된 미용용 콘택트렌즈를 대상으로 칼라렌즈의 색 안정성 확인을 위해 다목적콘택트렌즈 용액 침전, 에탄올 침전, 열소독 및 렌즈 착용의 방법으로 칼라렌즈의 염료 용출 여부를 조사하였다.
방법: ㉮, ㉯, ㉰사의 교정굴절력 0.00D인 고함수율 착색렌즈를 무작위로 선발하여 렌즈를 7일간 매일 다목적콘택트렌즈 용액에 침전 후, 24시간 70% 에탄올 침전 후, 10분간 중탕법에 의한 열소독 후 및 5시간 렌즈 실제 착용 후 렌즈의 전·후면을 면봉을 이용하여 문질러 면봉의 착색여부를 조사하였다.
결과: 1. 다목적 콘택트렌즈 용액 침전 시험에서 ㉮사 제품을 제외하고 ㉯, ㉰사 제품은 전면에서 상대적인 착색이 관찰되었다. 2. 에탄올(70%) 용액 침전 시험에서는 모든 제품에서 착색이 관찰되지 않았다. 3. 열소독 시험에서는 ㉮사 제품을 제외하고 ㉯, ㉰사 제품은 전면에서 상대적인 착색이 관찰되었다. 4. 렌즈 착용 시험에서는 ㉮사 제품을 제외하고 ㉯, ㉰사 제품은 전면에서 미미한 착색이 관찰되었다.
결론: ㉮사 제품은 모든 실험에서 면봉의 착색이 관찰되지 않아 염료의 용출 안전성이 확인되었으며, ㉯, ㉰사의 경우 주로 전면에서 착색이 관찰되었으며 후면의 착색은 미미하여 각막에 직접적인 영향은 제한적일 것이다. 이번 실험의 방법인 마찰에 의한 용출시험은 시료와 염료의 재질 및 제조공법에 따라 결과에 큰 차이가 있을 것이나 렌즈에 대한 정보가 미약하여 이번 실험의 제한점으로 작용하였다.
포스핀 정제는 비용이 저렴하고 잔류량이 적어 세계적으로 저곡해충 방제에 널리 이용되고 있는 식물검역 훈증제이 다. 그러나 훈증시설 내부 온습도의 영향으로 기화량이 감소하여 약량을 과도하게 투약하는 현상이 나타남에 따라 중국, 호주 등 45개국에서 포스핀 저항성 해충이 발생되고 있다. 이에 포스핀 저항성 해충을 방제하기 위한 방안이 요구됨에 따라 본 연구에서는 포스핀 저항성에 따른 에틸포메이트 효과 검증을 위해 시간에 따른 바구미류의 사충율을 확인하였다. 포스핀 저항성 정도는 FAO 매뉴얼(PH3 0.039mg/L, 20 hr)을 기준으로 어리쌀바구미는 포스핀 감수성, 쌀바구미는 포스핀 저항성과 포스핀 감수성이 있는 것으로 확인하였다. 실험은 상온에서 EF 70 mg/L 처리 후, 훈증시간을 다르게 하여 진행했다. 시험 결과, 쌀바구미는 포스핀 저항성에 관계없이 방제가 가능했으며, 포스핀 저항성 충 방제에 활용이 가능할 것으로 기대된다.
최근 국제사회에서 생태시스템 위주의 습지 보전제도에 대한 한계점과 기후변화에 적응할 수 있는 습지 관리에 대한 필요성에 대한 논의가 진행되면서, 세계자연보전연맹(IUCN)은 습지도시인증제 결의안을 채택하였다. ‘습지도시(Wetland City)’란 람사르 습지를 중심으로 습지들 간의 네트워크, 습지로부터 제공받는 생태계서비스 향상 계획, 다양한 이해관계자들이 참여한 통합적 토지이용계획, 다양한 스케일의 습지관리 거버넌스 등을 갖춘 도시를 말한다(IUCN, 2015). 이미 람사르 습지 제도가 있음에도 불구하고 습지도시인증제를 추가적으로 도입하려는 이유는 기존의 강력한 습지 보전 정책은 사회시스템과 생태시스템의 상호관계를 통합적으로 바라볼 수 있는 사회생태시스템 대한 관점이 부족하여 지역주민의 경제적 수단을 규제하고 그 지역사회 커뮤니티를 와해시킬 수 있기 때문이다. 더 나아가 사회시스템 붕괴는 생태계보전을 위한 생태적·사회적·경제적 자본 고갈로 이어져 수질 저하 및 생물다양성 감소 등 생태시스템 훼손이 발생할 수 있다. 특히 붕괴된 사회시스템과 훼손된 생태시스템으로 구성된 습지도시는 기후변화로 급증한 가뭄, 홍수와 같은 교란에 매우 취약하여 쉽게 붕괴할 수 있으므로, 원래 습지 도시 기능과 구조로 회복할 수 있는 능력인 리질리언스(Resilience)가 요구된다(Walker et al., 2006). 그러므로 지속가능한 습지도시를 구축하기 위해서는 생태시스템 위주의 습지관리에서 벗어나 사회생태시스템 기반의 리질리언스 향상 전략이 고려된 습지 관리가 필수적이라고 할 수 있다.
우리나라는 이러한 국제적 흐름을 선도하기 위해 창녕 우포늪, 고창 운곡습지, 제주동백동산, 물영아리, 인제 대암산용늪 등 5개소를 포함한 시·군을 습지도시 후보지로 선정하였다(Ministry of Environment, 2015). 이에 창녕군은 우포늪을 중심으로 ‘살아왔고, 살고 있고, 살아 갈 곳’이라는 슬로건을 내걸고 지역주민 간담회 및 지역관리 위원회를 개최하여 습지도시 인증을 위한 노력하고 있다. 우포늪 사회생태시스템은 정부부처, 지자체, 환경단체, 어업 및 농업주민 등으로 둘러싸여 복잡한 이해관계가 형성된 사회시스템과, 물의 흐름을 방해하고 토사의 축적을 유도하여 최대 저수량을 낮추는 버드나무 군락이 번성한 생태시스템으로 구성되어 있다. 따라서 우포늪 사회생태시스템은 기후변화에 의해 변화된 강수패턴에 대한 리질리언스가 지속적으로 감소하고 있으며, 수위 관리에 실패한 지역주민들의 홍수 및 가뭄 피해가 증가하고 있는 실정이다. 본 연구의 목적은 예상치 못한 교란인 강우패턴 변화에 대한 우포늪 사회생태시스템의 리질리언스를 향상시키기 위해 복잡한 사회생태시스템의 의사결정 도구인 시스템다이내믹스기반의 시뮬레이션을 활용하여 수위 변화의 동태성을 분석하고, 지속가능한 습지 관리방안을 도출하는 것이다. 이를 달성하기 위해 본 연구는 첫째, 현장조사 및 문헌고찰을 통해 우포늪 사회생태시스템에 대한 인과순환 구조를 파악하고, 둘째, STELLA 10.0.4를 사용하여 창녕군의 RCP 8.5 강수 시나리오에 대한 수위 변화 시뮬레이션 기본모델을 구축한다. 구축된 기본모델은 실제 수위데이터를 준거모드로 활용하여(Nakdong River Basin Environmental Office, 2016). 현실 설명력을 확보하기 위한 행태 유사성 분석을 실시하였다. 셋째, 수위 변화의 동태성 분석을 바탕으로 리질리언스 향상을 위한 습지 관리 방안을 도출하고자 한다.
우포늪 사회생태시스템의 인과순환 구조를 분석한 결과, 2개의 균형 루프와 2개의 강화루프가 도출되었다(그림 1). 균형루프 B1에서의 강수량 증가는 우포늪의 전체수량과 수위를 증가시킬 뿐만 아니라 지역주민으로 하여금 홍수 위기를 느끼도록 유도한다. 홍수 위기가 지속되면, 우포늪 지역주민들의 의사결정에 의해 배수시설이 가동되고 우포늪에서 토평천으로의 배수량이 증가한다. 배수량의 증가는 다시 우포늪의 전체수량을 낮춰 적정수준의 수위를 유지하도록 한다(균형루프 B1). 그러나 기후변화에 따른 강우 패턴 변화는 우포늪의 수리수문 시스템인 강화루프 R1과 균형루프 B2의 행태를 변화시킴으로써, 수위변화를 지역주민이 감지하여 홍수 위기가 유도되기까지의 과정에 시간지연을 발생시킨다. 시간지연 발생은 수위 상승에 적절한 배수시설 가동을 어렵게 하여, 빈번한 홍수발생을 야기할 수 있다. 버드나무 군락을 중심으로 한 강화루프 R1 또한 우포늪 수위 조절에 부정적인 영향을 미친다. 버드나무 군락은 성장하면서 개체의 흉고직경이 커지고, 단위 면적 당 버드나무 개체수와 토지피복 면적이 확장한다. 버드나무 면적의 증가는 토평천의 물의 흐름을 방해하여 유속을 줄이고 우포늪의 최대저수량을 감소시키므로, 강우 시 우포의 수위가 급격하게 상승하여 빈번한 홍수를 야기할 수 있다. 따라서 기후변화에 따른 강수패턴 변화에 적응하고 홍수 피해를 줄이기 위해서는 우포늪의 수위를 잘 관리하는 것이 요구된다.
도출된 우포늪 사회생태시스템 인과지도를 바탕으로 우포늪 수위의 동태성을 분석하기 위해 시뮬레이션 기본 모델을 구축하였다(그림 2). 구축된 기본모델의 현실 반영 정도를 살펴보기 위해 실제 수위 데이터와의 행태 유사성을 분석했다. 실제 수위데이터와 우포늪 사회생태시스템 기본모델의 수위 데이터를 비교한 결과, 두 데이터 모두 1월에는 2.4m까지 감소하고 8월에는 2.6m까지 증가하는 행태의 유사함을 확인할 수 있었으며, 이를 통해 기본 모델의 현실 설명력을 확보할 수 있었다. 현실 설명력이 확보된 기본모델을 바탕으로 우포늪의 토지이용 및 형태가 변하지 않는다는 경우를 가정하고 창녕군 지역의 RCP 8.5 강수 시나리오를 설정하고 적용하였다. 기본모델에서는 강우패턴 변화에 따라 우포늪 수위가 2.5m을 중심으로 균형을 이루었으나, RCP 8.5 강수 시나리오가 적용된 모델에서는 점차 수위가 증가하는 행태로 분석되었다. 버드나무 군락의 경우 시뮬레이션 모델이 기본모델보다 빠르게 확장하여 우포늪 최대 가능저수량을 지속적으로 저하시키는 것으로 분석되었다. 그 결과, 시나리오 적용 모델에서 2080년 이후의 우포늪 수위가 창녕군의 200년 홍수위인 3.1m에 도달하는 것으로 나타났다. 따라서 만약 우포늪 지역의 수위가 조절되지 않는다면, 홍수에 의한 빈번한 피해와 생물다양성 감소와 같은 생태시스템의 훼손으로 더 이상 사회시스템이 유지될 수 없을 것으로 예상된다.
우포늪의 수위 동태성 분석을 토대로 리질리언스 향상을 위한 습지 관리 방안을 도출하였다. 우포늪의 사회생태시스템의 붕괴를 방지하고 이 시스템이 지속가능하기 위해서는 우포늪의 수위조절시스템에 대한 안정적인 균형이 매우 중요하다. 즉, 높은 강수량이 우포에 유입된다고 하더라도 원래의 수위로 빠르게 복귀되어 홍수 위기에서 벗어날 수 있는 리질리언스 향상이 요구되는 것이다. 이를 위해 첫째, 버드나무 군락 생태시스템을 조절할 수 있다. 우포늪 수위조절시스템에 부정적인 영향을 주는 버드나무를 단계적으로 간벌하여 적정수준의 버드나무 밀도를 유지하는 것이 바람직하다고 할 수 있다. 이를 위해 토평천과 우포늪에 생육하고 있는 버드나무를 정기적으로 번성 범위, 높이, 밀생 상황에 대해 관찰 조사하고, 지하고는 2m 정도, 수고는 7m 정도 이하, 수관폭은 5~6m 정도이하를 원칙으로 하여 이것을 초과하는 나무에 대해서는 가지치기 등의 조치를 취하여야 할 것이다. 둘째, 우포늪의 수리수문 시스템을 조절할 수 있다. 야생동식물의 서식처로 이용될 수 있는 버드나무벌채 시 생태시스템이 부정적인 영향을 줄 수 있으므로, 사회시스템에서 요구하는 적정수위와 생태시스템에서 필요한 적정수질이라는 두 가지 목표를 동시에 충족시킬 수 있는 새로운 기술인 에코인프라스트럭처 도입이 필요하다. 에코인프라스트럭처는 물의 흐름 조절 및 생물 서식처 제공기능을 동시에 수행할 수 있으므로 사회생태시스템의 리질리언스 향상에 도움이 될 수 있을 것이다. 본 연구의 결과는 우포늪의 수위 동태성 분석을 통해 리질리언스 향상을 위한 습지관리 계획을 도출하였다는 점에서 의의가 있다. 이는 향후 우포늪의 습지도시 계획을 위한 통합적 중장기 전략수립에 기초 자료로 활용될 수 있을 것으로 기대한다.
본 연구에서는 선택배지와 건조필름을 이용하여 신선편이 엽채류 3종(양상추, 양배추, 어린잎채소)에서 병원성 E. coli를 분리하였고, 의심집락 동정을 위해 생화학적 분석법을 사용하여 동정한 후 결과를 비교 분석하였다. 양상추 20 g, 양배추 20 g, 어린잎채소 10 g에 병원성 E. coli 혼합 균액(Enterohemorrhagic E. coli NCCP11142, Enterotoxigenic E. coli NCCP14037, Enteropathogenic E. coli NCCP14038, Enteroaggregative E. coli NCCP14039, Enteropathogenic E. coli NCCP15661)을 최종농도가 1, 2, 3 log CFU/g이 되도록 접종하였고, BPW (80~90 ml)을 넣은 후60초 동안 균질화하여 분석하였다. 연구결과, 모든 시료에서 건조필름 시험 양성, 양상추 시료 일부(최종농도 3 log CFU/g 접종시료)를 제외한 모든 시료에서 증균배양법을 이용한 정성시험결과가 음성으로 나타났다. 증균배양과 건조필름 시험을 통해 분리한 병원성 E. coli를 이용하여 생화학적 분석을 실시한 결과, 양상추에서 분리한 병원성 E. coli의 경우, API 20E 100% (44/44), Microgen GNA 100% (44/44), Food System 66.7% (10/15)의 동정률이 나타났다. 양배추의 경우, API 20E 64.7% (22/34), Microgen GNA 50% (16/32), Food System 60% (9/15), 어린잎채소의 경우, API 20E 65.1% (28/43), Microgen GNA 62.3% (27/43), Food System 53.3% (8/15)가 병원성 E. coli로 동정되었다. 본 연구의 결과는 신선편이 엽채류에 대한 병원성 E. coli 검출법 선택에 유용하게 이용될 것으로 판단된다.
동절기에 공정육묘장에서 난방 에너지 절감과 우량묘 생산을 위해 나노탄소섬유적외선 난방등(NCFIHL, nanocarbon fiber infrared heating lamp)의 적정 전력과 설치 높이를 구명하는 것이 본 연구의 목적이다. 벤로형 유리 온실 내부에 수박 접목묘를 재배하기 위해 700과 900W NCFIHL을 육묘 베드(1.2 × 2.4m)에서 0.7, 1.0, 및 1.3m 높이로 각각 설치하였다. 수박(Citrullus lanatus (Thunb.) Manst.) ‘지존꿀’과 박(Lagenaria leucantha Rusby.) ‘선봉장’은 각각 접수와 대목으로 사용되었다. 접수와 대목은 편엽합접 방식으로 접목되었다. NCFIHL의 광도는 모든 처리에서 1μmol·m-2·s-1 이하였다. NCFIHL의 광분포는 대부분 적외선 영역에서 나타났다. 외기온도가 10oC 이하일 때 700과 900W NCFIHL을 0.7m 높이로 설치한 처리구와 900W NCFIHL을 1.0m 높이로 설치한 처리에서 야간 설정온도(20oC)를 유지하였다. 열화상 촬영에서는 900W NCFIHL을 0.7m 높이로 설치한 처리에서 가장 빨리 식물체의 온도가 올라갔다. Compactness는 700W NCFIHL을 1.3m 높이로 설치한 처리에서 우수하였다. 결과적으로 700W NCFIHL을 1.0m 이상으로 설치하는 것이 바람직하다고 판단된다.
포스핀 정제는 비용이 저렴하고 잔류량이 적어 세계적으로 저곡해충 방제에 널리 이용되고 있는 식물검역 훈증제이 다. 그러나 훈증시설 내부 온습도의 영향으로 기화량이 감소하여 약량을 과도하게 투약하는 현상이 나타남에 따라 중국, 호주 등 45개국에서 포스핀 저항성 해충이 발생되고 있다. 이에 포스핀 저항성 해충을 방제하기 위한 방안이 요구됨에 따라 본 연구에서는 포스핀 저항성 정도에 따른 적합한 방제 농도 및 훈증시간을 설정하기 위해 쌀바구미에 대한 포스핀 저항성을 판별하고 저항성 수준을 측정하였다.
어리쌀바구미의 포스핀 저항성은 FAO 매뉴얼(PH3 0.039mg/L, 20 hr)을 참고하여 그 결과에 따라 포스핀 저항성과 감수성으로 나누어 사육 및 실험에 사용하였다. 실험은 상온에서 20시간동안 진행하였으며 그 결과 포스핀 저항성 쌀바구미 성충의 LCT99값은 78.558 mg h/L, 포스핀 감수성 쌀바구미 성충의 LCT99값은 0.672 mg h/L였다.
메틸브로마이드(MB)가 1989년 제정된 몬트리올 의정서에 의거 오존층 파괴물질로 지정되면서 MB대체제로 에틸포메이트(EF) 훈증법이 대두되고 있다. 기존 에틸포메이트 훈증제의 경우, 고압 이산화탄소를 충전하고 액체 에틸포메이트를 딥튜브를 이용해 분사 후 기화기를 통해 기화시키는 방식으로 이산화탄소의 충전, 이동 및 안전관리 부분에서 고비용이 필요하다. 고비용의 기존 단점을 개선하기 위해 액체 에틸포메이트와 질소 혼합처리법은 고안하였 다. 따라서 본 연구는 액체 에틸포메이트와 질소 혼합처리법을 오렌지에 대한 귤가루깍지벌레 효과 시험을 하였다.
질소가 사충율에 영향을 미치는 정도를 질소 농도 (80, 82, 84, 86%/55L)를 다르게 하고, 액체 에틸포메이트 농도(1mg/L) 혼합 처리 했을 때, 질소 농도에 관계없이 동일한 사충율을 보였다. 질소가 사충율에 영향이 없다는 것을 확인하였다.
쌀바구미(Sitophilus oryzae)는 어리쌀바구미(Sitophilus zeamais)와 형태학적으로 아주 유사한 바구미과로 수컷의 생식기로 종의 구별이 가능하며, 최근에 기술이 발달하여 분자유전학적으로도 동정이 가능해졌다. 국내에는 어리쌀바 구미가 주로 분포하고 있다고 보고되어져 있으나, 쌀바구미의 분포에 대해서는 명확한 보고가 없었다.
국내 A 미곡처리장(126.8674, 35.9524056)에서 채집한 바구미의 수컷 생식기를 이용한 형태학적 및 species-specific primer를 이용한 분자유전학적 동정 결과 쌀바구미로 확인되었다. 또한 채집된 바구미에 대해 포스핀 저항성 수준(FAO 기준: 0.039 mg/L) 확인 결과, LCT99 값이 0.475 mg/L로 약 10배 이상의 포스핀 저항성으로 판정되었다.
쌀바구미(Sitophilus oryzea)와 어리쌀바구미(Sitophilus zeamais)는 바구미과(Curculionidae)로 딱정벌레목 (Coleoptera) 에 속하고, 전 세계적으로 분포하는 주요 저곡해충이다. 쌀바구미와 어리쌀바구미는 형태학적으로 아주 유사하여 구분이 어렵다. 시험에 사용된 모든 바구미는 수컷은 형태적 동정(생식기 확인)과 분자적 동정(cytochrome oxidase subunit 1)을 확인했으며, 암컷은 분자적 동정을 실시하였다. 본 연구는 같은 속(Sitophilus)에 속하며 형태적으로 구분이 어려운 두 종의 근연관계를 확인하기 위하여 쌀바구미와 어리쌀바구미 교차교미 실험을 진행하였다.
① 쌀바구미 ♀×♂, ② 어리쌀바구미 ♀×♂ ③ 쌀바구미(♀)×어리쌀바구미(♂) ④ 쌀바구미(♂)×어리쌀바구미(♀) 시험구 모두 교미 및 산란하였다. 그 결과 F1 세대가 ① 처리구 평균 11.2마리, ② 처리구 평균 32.5마리, ③ 처리구 평균 22.8마리, ④ 처리구평균 1.7마리 나왔다. ④ 시험구인 쌀바구미(♂)×어리쌀바구미(♀)의 다음 세대가 극단적으로 적었지만, 이종간에 교배가 가능함을 확인하였다. 또한, F1 세대가 쌀바구미인지 어리쌀바구미인지 형태적, 분자적 확인한 결과, 각 처리구의 암컷 종(species)으로 확인되었다. 본 결과로 쌀바구미 암컷의 생식력이 좋아 종간 경쟁에서 우위를 점하게 되는 것으로 생각된다.
대부분의 십이지장 천공은 증상을 유발하므로 급성기에 발견된다. 그러므로 시기를 알 수 없이 우연히 발견된 만성 십이지장 천공은 드물고 치료의 기준도 명확하지 않다. 본 증례 경우에는 보존적 치료 후에 병변이 호전되었다. 이와 같이 우연히 천공이 발견된 증례는 드물고 향후 관심이 필 요할 것으로 사료되어 문헌 고찰과 함께 보고한다.
본 연구에서는 다양한 처리 온도와 압력 조건에 따라 초임계 이산화탄소(SC-CO2) 처리한 동결 건조 소간의 이화학적 특성을 비교분석하였다. 무기성분은 SC-CO2 처리에 의해 다소 감소한 Cu를 제외하고는 대체적으로 증가하는 경향을 보였다. Vit A는 SC-CO2처리에 의해 다소 감소하였지만, vit B3는 처리에 의해 모든 조건에서 증가하였으며, 특히 45℃, 450bar에서는 13.20mg/100g으로 가장 높게 나타났으며, 처리 전 7.16mg/100g에 비해 크게 증가하였다. 소간 내 지방의 추출 수율은 SC-CO2 처리 시 온도와 압력이 증가함에 따라 높아지는 경향을 보였다. SC-CO2 처리에 의해 취득한 소간유의 지방산 조성을 분석한 결과, 주요 지방산은 Palmitic acid(43.20~55.82%), Linoleic acid(9.25~16.80%) 그리고 Myristic acid(5.16~10.54%)로 나타났다. 또한, 17종의 아미노산을 분석한 결과, 45℃에서 SC-CO2를 처리하였을 때 아미노산의 손실이 적게 일어났었다. 이상의 결과를 종합하여 보면 SC-CO2는 낮은 수분함량에서도 이화학적 특성의 변화를 최소화 하였다. 이에 따라 SC-CO2 처리는 식품산업에서 부산물인 소간을 이용하여 미생물의 오염으로부터 안전한 고부가가치 식품으로써 다양한 가능성을 열 수 있을 것으로 판단된다.
The pre-treatment conditions of butterbur stem such as blanching, freezing, and thawing were studied to optimize it for producing frozen butterbur stem to improve its storage ability. Butterbur stems were hot water blanched at 100oC for 3, 5, or 7 min respectively and then soaked in cold water. After peeling out and cutting into blocks (4.5×1.0×0.5 cm), butterbur stems were air-dried for 5, 10, or 15 min respectively. Dried samples were analyzed for their physicochemical properties. With blanching, the hardness value increased from 2.91 kg to 3.64 kg (p>0.05); however, adhesiveness decreased drastically after 5 min of blanching (p<0.05), which changed to a crisp texture. In addition, considering other physicochemical properties, it was assumed that 5-min blanching was optimal pre-treatment to maintain the original quality of butterbur stem for freezing. Five-minute blanched butterbur stems were airdried 5 min, frozen and thawed with several methods, and analyzed for their properties. Considering the thawing loss, hardness, and color change, the fastest freezing and thawing method had the lowest changes on the quality of frozen butterbur stem. Therefore, to produce frozen butterbur stem, it was assumed that immersion freezing and running water or room temperature thawing (25oC) were the best process.
본 연구는 하절기 고품질 토마토 공정묘 생산을 위한 차광제 종류와 처리 농도에 따른 소형 간이온실 내부의 온도 하강 효과와 작물생육에 미치는 영향을 구명하고자 실시되었다. 차광제는 Greenshade(Daesung C & S Co. Ltd., Korea)와 Redusol, Reduheat(Mardenkro Co. Ltd., Netherlands)를 각각 30%(water:shade agent = 7:3, v/v)와 60%(30%×2회)의 농도로 처리하였다. 차광제 처리에 따른 식물체 온도는 Greenshade(GS) 30% 처리구에서 가장 낮은 값을 나타냈다. 초장은 처리별 유의차가 없었으며, 경경은 대조구에서 높은 값을 나타냈다. 엽장과 엽폭은 GS 30% 처리구에서 시간이 경과함에 따라 높은 값을 나타냈다. 엽록소 값 역시 GS 30% 처리구에서 가장 높아 Greenshade가 광 선택적 차광제로써 효과적인 것으로 판단된다. 엽록소 형광은 3주차 GS 60% 처리구에서 가장 낮은 값으로 측정되어 스트레스 수치가 높았다. 근장과 엽면적, 지상부와 지하부의 생체중 및 건물중은 차광제 처리에 따른 유의적인 차이가 없었다. 지상부와 지하부의 건물중 무게 비율인 T/R율은 대조구와 GS 30%에서 가장 낮은 값이 나타났다. 따라서 Greenshade 30%를 처리하는 것이 식물체의 온도 저감과 생육에 가장 효과적인 것으로 판단된다.