Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd’s excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.
As a promising anode for sodium-ion batteries (SIBs), cobalt sulfide ( CoS2) has attracted extensive attention due to its high theoretical capacity, easy preparation, and superior electrochemical activity. However, its intrinsic low conductivity and large volume expansion result in poor cycling ability. Herein, nitrogen-doped carbon-coated CoS2 nanoparticles (N–C@ CoS2) were prepared by a C3N4 soft-template-assisted method. Carbon coating improves the conductivity and prevents the aggregation of CoS2 nanoparticles. In addition, the C3N4 template provides a porous graphene-like structure as a conductive framework, affording a fast and constant transport path for electrons and void space for buffering the volume change of CoS2 nanoparticles. Benefitting from the superiorities, the Na-storage properties of the N–C@CoS2 electrode are remarkably boosted. The advanced anode delivers a long-term capacity of 376.27 mAh g− 1 at 0.1 A g− 1 after 500 cycles. This method can also apply to preparing other metal sulfide materials for SIBs and provides the relevant experimental basis for the further development of energy storage materials.
We produced an activated carbon using sodium-lignosulfonate, in which we investigated how the sodium salt in lignin served as the activating agent during heat treatment. Our process resulted in a product with a high specific surface area of 1324 m2/ g at 800 °C and microporous structure. During the activation process, we observed the consumption of carbon due to the dehydration reaction of NaOH and the reduction of Na2CO3 to metallic Na, which created pores through oxidation/ reduction reactions. The intercalation of metallic Na between the lattices at high temperatures formed additional pores and increased the specific surface area. Our proposed mechanism holds promise for enhancing the control of the microstructure and porosity of activated carbons through the thermal treatment of biomass.
A novel kind of self-assembled graphene quantum dots-Co3O4 (GQDs-Co3O4) nanocomposite was successfully manufactured through a hydrothermal approach and used as an extremely effectual oxygen evolution reaction (OER) electrocatalyst. The characterization of morphology with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Co3O4 nanosheets combined with graphene quantum dots (GQDs) had a new type of hexagonal lamellar selfassembly structure. The GQDs-Co3O4 electrocatalyst showed enhanced electrochemical catalytic properties in an alkaline solution. The start potential of the OER was 0.543 V (vs SCE) in 1 M KOH solution, and 0.577 V (vs SCE) in 0.1 M KOH solution correspondingly. The current density of 10 mA cm− 2 had been attained at the overpotential of 321 mV in 1 M KOH solution and 450 mV in 0.1 M KOH solution. Furthermore, the current density can reach 171 mA cm− 2 in 1 M KOH solution and 21.4 mA cm− 2 in 0.1 M KOH solution at 0.8 V. Moreover, the GQDs-Co3O4 nanocomposite also maintained an ideal constancy in an alkaline solution with only a small deterioration of the activity (7%) compared with the original value after repeating potential cycling for 1000 cycles.
With the advancement and diversification of the bread industry, eco-friendly products with less sugar and salt, and containing functional ingredients are being developed. To develop healthy bread, Korean pine leaf powder was added in different proportions (0%, 1%, 3%, 5%, and 7%), and the quality characteristics of the bread, namely height, moisture, color value, texture, antioxidant property, and sensory characteristics were evaluated. As the amount of leaf powder was increased in the bread, L-value in the range of 53.45~85.05 (p<0.001) and adhesiveness in the range of 0.13~0.32 mJ (p<0.001) decreased significantly, whereas b-value in the range of 16.75~30.74 (p<0.001), total polyphenol content in the range of 466.83~669.13 ug/mL, ABTS- in the range of 0.46~43.23%, DPPH-radical in the range of 1.39~45.76%, scavenging capacities (p<0.001), color in the range of 3.27~5.40 (p=0.017) and texture in the range of 4.33~4.80 (p=0.006) preferences increased significantly. This study could increase the utilization of Korean pine leaf and the production of healthy food with antioxidant properties.
VRFB에 사용되는 막의 수송 능력은 배터리 성능에 필수적인 요소이다. 탁월한 배터리 성능을 위해서는 높은 양 성자 전도도와 낮은 바나듐 이온 투과도가 달성되어야 한다. 하지만 양성자 전도도와 바나듐 이온 투과도 사이에는 상충관계 가 존재한다. 따라서 이 상충관계를 해결하는 것이 VRFB의 발전에 필수적이다. 또한 높은 쿨롱 효율, 전압 효율 및 에너지 효율을 유지하는 것이 고성능 VRFB를 위해 필수적이다. 최근 복합막과 SPEEK 막을 중심으로 나피온 막의 기존 한계를 극 복하기 위한 다양한 시도가 이루어지고 있다. VRFB은 이 논문에서 검토하는 복합막에서 충전식 배터리의 필수 등급이다.
PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.