One of the key challenges for the commercialization of carbon nanotube fibers (CNTFs) is their large-scale economic production. Among CNTF spinning methods, surfactant-based wet spinning is one of the promising techniques for mass producing CNTFs. Here, we investigated how the coagulation bath composition affects the spinnability and the properties of CNTFs in surfactant-based wet spinning. We used acetone, DMAc, ethanol, and IPA as coagulants and analyzed the relationship between coagulation bath composition and the properties of CNTFs in terms of kinetic and thermodynamic coagulation parameters. From a kinetic perspective, we found that a low mass transfer rate difference (MTRD) is favorable for wet spinning. Based on this finding, we mixed the coagulant bath with solvent in a proper ratio to reduce the MTRD, which generally improved the wet spinning. We also showed that the coagulation strength, a thermodynamic parameter, should be considered. We believe that our research can contribute to establishment of surfactant-based wet spinning of CNTFs.
With the wide application of portable wearable devices, a variety of electronic energy storage devices, including microsupercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced threedimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H2SO4 as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm− 2 at the scanning rate of 5 mV s− 1, which is much higher than the 2.89 mF cm− 2 of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.
This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassiumion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.
Forbush decreases (FDs), as the transient event of decreasing cosmic ray (CR) intensity, show the main phase of a sudden decrease within approximately one day and the recovery phase over several days. FDs are associated with abrupt solar wind events such as interplanetary shocks (IP shocks) and magnetic clouds. FD generation is explained by drift due to the magnetic field strength and by diffusion caused by magnetic turbulence. The FDs and the IP shocks from 1998 to 2004 in the solar maximum period were chosen to determine a more effective generation of FD between drift and diffusion. Seventy FDs with a CR variation of more than 3.0% and a minimum value of less than −1.5% were selected using Oulu neutron monitor data. The Advanced Composition Explorer satellite identified 292 IP shocks and we divided them into two sections: the pre-sheath region ahead of the shock front and the post-sheath region behind the shock front. The magnetic field strength, magnetic turbulence, solar wind speed, and solar wind turbulence of the post-sheath regions were analyzed. Most (62/70) of the FDs were associated with the post-sheath regions of the IP shocks. The important factors that generated the FDs were drift by the large physical properties in the post-sheath regions and diffusion by the strong turbulence in the post-sheath regions. The increase in the magnitude of interplanetary magnetic field (IMF) shows larger in the IP shocks associated with FD (2.33 times) than in those not associated with an FD (1.70 times) between the pre-sheath and post-sheath regions. On the other hand, the increase in turbulence of IMF was the same for IP shocks associated with an FD and not associated with an FD. Although it was difficult to determine the dominant factor for the generation of FDs, the present study suggested that the drift by the magnetic field strength may play a more significant role than the diffusion by the magnetic turbulence.
Full spectrum fitting is a powerful tool for estimating the stellar populations of galaxies, but the fitting results are often significantly influenced by internal dust attenuation. For understanding howthe choice of the internal dust correction method affects the detailed stellar populations estimated from the full spectrum fitting, we analyze the Sydney-Australian Astronomical Observatory Multiobject Integral field spectrograph (SAMI) galaxy survey data using the Penalized PiXel-Fitting (PPXF) package. Three choices are compared: (Choice-1) using the PPXF reddening option, (Choice-2) using the multiplicative Legendre polynomial, and (Choice-3) using none of them (no dust correction). In any case, the total mean stellar populations show reasonable mass-age and mass-metallicity relations (MTR and MZR), although the correlations appear to be strongest for Choice-1 (MTR) and Choice-2 (MZR). Whenwe compare the age-divided mean stellar populations, theMZRof young (<109.5 yr ≈ 3.2 Gyr) stellar components in Choice-2 is consistent with the gas-phase MZR, whereas those in the other two choices hardly are. On the other hand, the MTR of old (≥109.5 yr) stellar components in Choice-1 seems to be more reasonable than that in Choice-2, because the old stellar components in low-mass galaxies tend to be relatively younger than those in massive galaxies. Based on the results, we provide empirical guidelines for choosing the optimal options for dust correction.
Background: Forward head posture affects many individuals and can cause pain and dysfunction in the muscles and joints of the head, neck, and shoulders. Objectives: This study aimed to assess muscle activity and onset time of cervical and scapular muscles during 180° shoulder flexion and abduction in individuals with normal head posture (NHP) and in those with forward head posture (FHP), both before and after correction. Design: Cross-sectional study. Methods: Thirty-six individuals were divided into FHP and NHP groups. Muscle activity and muscle contraction onset time of the splenius capitis, sternocleidomastoid, upper middle and lower trapezius, and serratus anterior muscles were measured during shoulder flexion and abduction using wireless surface electromyography. Results: The FHP group exhibited increased muscle activity compared to the NHP group (P<.05), notably in the sternocleidomastoid and middle trapezius muscles, more so during shoulder abduction than flexion (P<.05). Regarding muscle contraction onset time, sternocleidomastoid onset was fastest during shoulder abduction in the FHP group (P<.05), while serratus anterior onset was slowest during both shoulder abduction and flexion (P<.05). Conclusion: These findings highlight distinct muscle activity and muscle contraction onset time patterns based on head posture and shoulder movement. Selective muscle activation strategies may help reduce heightened sternocleidomastoid and trapezius activity and enhance serratus anterior engagement in individuals with FHP.
The thermal conductivity (TC) of graphene-based/metal composites is currently not satisfactory because of the existence of large interfacial thermal resistance between graphene and metal originating from the strong scattering of phonons. In this work, 6063Al-alloy-based reduced graphene oxide (rGO) composite with strong covalent bonds interface was prepared via self-assembly, reduction, and electrophoresis-deposition processes by using 3-aminopropyl triethoxysilane (APTS) as a link agent. Structural characterizations confirmed the successful construction of strong Al-O-Si-O-C covalent bonds in the as-prepared 6063Al-Ag-APTS-rGO composite, which can promote the transfer of phonons in the interface. Benefiting from the unique structure, 6063Al-Ag-APTS-rGO (214.1 W/mK) showed obviously higher cross-plane TC than 6063Al (195.6 W/mK). Comparative experiments showed that 6063Al-Ag-APTS-rGO has better cross-plane TC than 6063Al/Ag/ APTS/rGO (196.6 W/mK) prepared via physical mixing of stirring process, evidencing the significance of electrophoresisdeposition (EPD) process on constructing strong covalent bonds for improving the heat dissipation performance. Besides, the effects of different rGO contents and test temperature on the TC of the composites and their corrosion resistance were also discussed. This work demonstrated a feasible strategy for the construction of metal–carbon interface composite with improved thermal performance.
Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
To reduce production cost and inhibit the aggregation of graphene, graphene oxide and copper nitrate solution were used as raw materials in the paper. Cu particles were introduced to the graphene nanosheets by in-situ chemical reduction method in the hydrazine hydrate and sodium hydroxide solution, and the copper matrix composite reinforced with Cu-doped graphene nanosheets were fabricated by powder metallurgy. The synthesized Cu-doped graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The relative density, hardness, electrical conductivity and tensile strength of the copper matrix composite reinforced with Cudoped graphene were measured as well. The results show that copper ions and graphene oxide can be effectively reduced by hydrazine hydrate simultaneously. Most of oxygen functional groups on the Cu-doped graphene sheets can be removed dramatically, and Cu-doped graphene inhibit the graphene aggregation effectively. Within the experimental range, the copper matrix composites have good comprehensive properties with 0.5 wt% Cu-doped graphene. The tensile strength and hardness are 221 MPa and 81.6 HV, respectively, corresponding to an increase of 23% and 59% compared to that of pure Cu, and the electrical conductivity reaches up to 93.96% IACS. However, excessive addition of Cu-doped graphene is not beneficial for the improvement on the hardness and electrical conductivity of copper matrix composite.
Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.
In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM’s durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.