검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4,563

        2901.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. 0 and powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50 for 1 h in H atmosphere. The fabricated Fe-Co alloy powders showed ' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.
        3,000원
        2902.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.
        4,000원
        2906.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Poly(methyl methacrylate)/clay nanocomposite particles with particle size of 275~292 nm range were successfully prepared using emulsion polymerization. The content of montmorillonite based on the methyl methacrylate monomer was chosen as 30 wt.%. 2,2-azobis(isobuthylamidine hydrochloride) and n-dodecyltrimethylammonium chloride were used as an initiator and a surfactant in cationic emulsion system. Potassium persulfate and sodium lauryl sulfate were used as an initiator and a surfactant in anionic emulsion system. The evidence of intercalated /exfoliated structure of montmorillonite in the nanocomposite prepared in our experiment was confirmed by wide angle x-ray diffraction patterns of d001 plane. Thermal behavior of nanocomposite was traced using DSC and TGA. It was found that the nanocomposite particle prepared by cationic emulsion system showed intercalated structured. We also found that the nanocomposite particle obtained from anionic emulsion system resulted in the fully exfoliated structure.
        4,000원
        2907.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical properties of carbon filler/PVdF [poly(vinylidene fluoride)] composite were investigated as a funtion of carbon filler/PVdF ratio in the range of 0.2~0.5. Three kinds of comercialzied conductive carbon blacks such as Hiblack 41Y, KE300J, and KE600J, and carbon nanofibers prepared by the catalytic chemical vapor deposition of C2H4 over Ni-Cu catalysts were used as the carbon fillers. The electrical conductivity of carbon filler/PVdF composites were in the range of 0.65 to 13.5 S/cm depending the fillers' electrical conductivity ranging from 5.6 to 23.1 S/cm. Among the carbon fillers used, the KE600J carbon black showed the highest conductivity both in the composite and filler itself because of its high degree of graphitization due to the high-temperature thermal treatment and its high surface area due to the activation treatment.
        4,000원
        2908.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Poly(oxypropylene-oxyethylene glycol) block copolymer(PBC) oil dispersant, which has low toxicity, high biodegradability, and an excellent dispersion efficiency to crude oils and weathered W/O emulsion was prepared by blending PBC, poly(oxyethylene) oleate, and sorbitan monooleate. The dispersing efficiency was measured by swirling flask method. The PBC oil dispersant had an excellent dispersing efficiency to weathered oil products formed as stable W/O emulsion, and the low toxicity, such as 4000 ppm to Oryzias Latipes(24 hr, TLM), Brine Shrimp Artemia(24 hr, TLM).
        4,000원
        2909.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ethyl cellulose(EC)와 platinum(II) acetylacetonate(Pt), rhodium(III)acetylacetonate(Rh)를 이용하여 용매증발법으로 고분자-금속 착체막을 제조하였다. 이때 최종 분리막의 제막조건을 최적화하기 위하여 금속염의 조성을 변화시켰다. (0.3-4.0 wt%). FTIR을 이용하여 EC-금속착체막을 분석하였으며 SEM을 이용하여 막의 구조를 관찰하였다. 그리고 산소, 질소, 이산화탄소, 메탄 가스들의 투과성능을 조사하였다. 금속염들은 모든 가스들의 선택도의 감소없이 투과도를 향상시킨다는 것을 알 수 있었다 그러나 Pt의 경우 산소와 질소가스의 투과성능에 더 영향이 있었으며, Rh은 이산화탄소와 메탄가스의 투과도에 더 영향이 있음을 알 수 있었다. EC-Pt 착체막의 경우에는, Pt의 산소와의 친화력특성에 기인하여 산소/질소의 선택도가 증가(37%)하는 것을 보여주었다.
        4,000원
        2910.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 직접메탄을 연료전지(Direct Methanol Fuel Cell DMFC)용 전해질 막으로 이용되는 양이온교환막의 개발에 관한 것이다. 투과증발공정에서 메탄을 Barrier로 잘 알려져 있는 Poly(vinyl alcohol)을 Base polymer로 사용하고 양이온 교환기가 포함되어 있는 Poly(acrylic acid)를 가교제로 사용하여 가교제의 함량변화에 따른 메탄을 투과도(Methanol permeability) 이온전도도(Ion conductivity) 이온교환용량(Ion exchange capacity) 함수율(Water content) 고정이온농도(Fixed ion concentration)를 통해 막 특성을 측정하였다. 메탄올 투과도와 이온전도도는 가교제인 PAA함량이 증가함에 따라 감소하다가 15%이상에서는 증가하는 경향을 보였다. 이것은 가교제의 함량증가로 인한 가교의 영향과 가교제에 포함되어 있는 친수성기의 도입으로 이와 같은 결과가 나타난다고 예상된다. 실험결과를 통해 DMFC에 적용가능성이 있는 막은 25℃ 50℃에서의 메탄을 투과도가 6.49×10-8/cm2/s 2.85×10-7/cm2/s 25℃ 50℃에서의 이온전도도가 2.66×10-3S/cm 9.16×10-3S/cm 이온교환용량이 1.32 meq/g membrane 함수율이 0.25 g H2O/g membrane 고정이온농도가 5.25 meq/g H2O인 PVA/PAA-160℃ 15% 막으로 예측된다.
        4,000원
        2911.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        폴리아닐린(polyaniline, PANI)과 도판트인 camphorsulfonic acid(CSA), dodecyl benzene sulfonic acid(DBSA)와 의몰비 변화에 따라 가상 n형 PANI을 제조하였다. FT-IR측정으로부터 도핑유무를 확인하였고, indium thin oxide(ITO)에 코팅하여 제조한 전극에 대해, 순환전압전류법과 교류임피던스법을 이용하여 도판트의 영향을 조사하였다. FT-IR과 순환전압전류법으로부터, 제조된 전극이 양이온의 도핑-탈도핑이 일어나는 가상 n형의 특성을 가짐을 확인하였다. 순환전압전류법에서 산화-환원 피크전류값은 PANI/DBSA에 비하여 PANI/CSA가 약 5 배정도 더 큰 결과를 보였다. 교류임피던스법으로부터, 두 전극 모두 이상적인 Randles의 등가회로와 유사한 거동을 보였다. 전하이동저항은 PANI/CSA에서 1.14~1.09 kΩ으로 거의 일정한 값을 보였고, PANI/DBSA는 DBSA 몰 비에 증가에 따라 27.73~8.37KΩ으로 감소하여 나타났다. 이중층용량 또한 PANI/CSA는 13.47~14.59 μF으로 거의 일정하였으나, PANI/DBSA는 DBSA 몰 비 증가에 따라 0.49~l.20 μF으로 증가를 보였다. 결과적으로 PANI/CSA의 전기적 특성이 더 좋았으나, 도판트의 몰 비 증가에 따른 특성은 PANI/CSA 전극은 거의 일정하였고, PANI/DBSA 전극은 전기적 활성이 좋아짐을 알 수 있었다.
        4,300원
        2916.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80 with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85 at the heating rate of 1/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120 for 1 h with the heating rate of 1/min.
        4,000원
        2917.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized Ni-ferrite powder was fabricated by spray pyrolysis process using the waste solution resulting from shadow mask processing. The average particle size of the powder was below 100 nm. The effects of the concentration of raw material solution, the nozzle tip size and air pressure on the properties of powder were studied. As the concentration increased, the average particle size of the powder gradually increased and its specific surface area decreased, but size distribution was much wider and the fraction of the Ni-ferrite phase greatly increased as the concentration increasing. As the nozzle tip size increased from 1 mm to 2 mm, the average particle size of the powder decreased. In case of 3 mm nozzle tip size, the average particle size of the powder increased slightly. On the other hand, in case of 5 mm nozzle tip size, average particle size of the powder decreased. Size distribution of the powder was unhomogeneous, and the fraction of the Ni-ferrite phase decreased as the nozzle tip size increasing. As air pressure increased up to 1 kg/, the average particle size of the powder decreased slightly, on the other hand, the fraction of the Ni-ferrite phase was almost constant. In case of 3kg/ air pressure, average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased, but size distribution was narrow.
        4,000원
        2918.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100 showed poor elongation and low fracture strength, while the Wi rods sintered above 100 revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100 are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8 to 10. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.
        4,000원
        2919.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.
        4,000원
        2920.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120 for 2 hours has average particle size of 150 nm.
        4,000원