검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        21.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An icing phenomenon of wind turbine blade are caused by wind speed, air temperature, liquid water content, droplet size, and so on. In this study, the analyses were carried out at a liquid water content of 0.20g/㎥, droplet size of 25 um, wind speed of 11.4m/s and air temperatures of -15, -10, -5℃ using NREL 5MW wind turbine. The software uses FENSAP-ICE's CFD Flow Solver, Drop 3D and ICE 3D. The analysis of icing shape and mass with temperatures according to air foil was derived, and the required heat quantity for de-icing was calculated at NACA 64618 airfoil for air temperature of -15℃. Power curves with wind velocities are suggested for economical analysis.
        4,000원
        23.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The object of research is based on 1.5 MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm(PSO), the design optimization model of the aerodynamic shape of blade is established. Through this study, the optimization results of the angle inducing ′ and tangential inducing  were obtained. The calculation programs are written and calculated chord length and torsion angle of the blade used by ′ and . The calculation result for the optimized wind turbine was 1.38 MW when the wind speed was 16 m/s. The 8 % error could be considered as an engineering acceptable error and the calculated values can be proved the correctness of the design value.
        4,000원
        24.
        2017.04 구독 인증기관 무료, 개인회원 유료
        The object of research in Based on 1.5MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm, the design optimization model of the aerodynamic shape of blade is established. The calculation programs are written by use of MATLAB and calculate chord length and torsion angle of the blade. Then the shape of wind turbine blade is obtained. As research we can know that the chord length is decreased after optimization design of wind turbine blade, The optimized blade not only meets the actual manufacturing requirement, but also has the largest wind energy utilization coefficient.
        4,000원
        26.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of the important advantages of Thermosonics is that it can be applied to complex structures such as a turbine blade as a convenient and quick screening test method. For a reliable thermosonic test, the vibrational characteristics of the system comprising the tested structure and the clamp at ultrasonic frequency range should be identified. Therefore, this study presented the analysis results of frequency response functions and mode shapes of the turbine blade and clamp system and investigate the possibility of the reliable excitation system for the thermosonic test.
        4,000원
        27.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Industry 4.0’s goal is the ‘Smart Factory’ that integrates and controls production process, procurement, distribution and service based on the fundamental technology such as internet of the things, cyber physical system, sensor, etc. Basic requirement for successful promotion of this Industry 4.0 is the large supply of semiconductor. However, company I who produces dicing blades has difficulty to meet the increasing demand and has hard time to increase revenue because its raw material includes high price diamond, and requires very complex and sensitive process for production. Therefore, this study is focused on understanding the problems and presenting optimal plan to increase productivity of dicing blade manufacturing processes. We carried out a study as follows to accomplish the above purposes. First, previous researches were investigated. Second, the bottlenecks in manufacturing processes were identified using simulation tool (Arena 14.3). Third, we calculate investment amount according to added equipments purchase and perform economic analysis according to cost and sales increase. Finally, we derive optimum plan for productivity improvement and analyze its expected effect. To summarize these results as follows : First, daily average blade production volume can be increased two times from 60 ea. to 120 ea. by performing mixing job in the day before. Second, work flow can be smoother due to reduced waiting time if more machines are added to improve setting process. It was found that average waiting time of 23 minutes can be reduced to around 9 minutes from current process. Third, it was found through simulation that the whole processing line can compose smoother production line by performing mixing process in advance, and add setting and sintering machines. In the course of this study, it was found that adding more machines to reduce waiting time is not the best alternative.
        4,000원
        28.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to observe the wind load characteristics around two-dimensional rotor blade of small wind turbine under high wind speed. The CFD analysis on the blade shape of NACA-4418 is performed to understand the wind load(i.e., drag and lift coefficient). In the results, the drag and lift coefficient were estimated to be 0.013, 0.44, respectively, at the wind speed 35m/s(wind speed at the height of wind tower, z=70m) and angle of attack 3°. By using the lift, drag coefficient and the appropriate assumption of the blade length, the number of blade and the tip speed ratio(TSR), the proper blade shape was obtained. On the base of this basic study, various conditions for Reynolds number and aerodynamic analysis including angle of attack according to parametric test need to study more in the future. Also assessment for the blade need to study safety on wind pressure coefficient and distribution according to wind characteristics.
        4,000원
        29.
        2016.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a numerical experiment on a tidal turbine was performed based on a water wheel design using the commercial CFD code ANSYS-CFX to contribute to the development of water wheels. The water wheel type tidal turbine was studied with different numbers of rotor blades (including ten, twelve and twenty blades types) and with different blade shapes (Straight, Curved and Zuppinger types) for comparison at several values of tip speed ratio (TSR) ranging from 0.7 to 1.2. The numerical results indicated that the 10-bladed type and the Straight-bladed type turbines absorb the highest power efficiency, up to 43 % at TSR 0.9. In addition, the 20-bladed and the Curved-bladed types showed the lowest performances in all cases of TSRs comparing with the others. Besides that, it was found that this turbine operates much effectively at low range of TSR, especially at TSRs 0.9 and 1 for all cases of blade shapes and all numbers of blades.
        4,000원
        30.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, among the domestic MMORPG narrative research is scarce, it began to study to determine the trend. In order to identify trends, selected for study, Big company ‘NCsoft’ has made 「Lineage」, 「Aion」, and「Blade & Soul」. Glassner the selection of works based on the Branching Narrative structure is proposed and analyzed the structure of the narrative of the three games. Analysis of each game is found to be fused in the form of branch narrative structure. And fusion forms from the past to the present was to get the results came increasingly been reduced. If the results of this study will be a springboard to the MMORPG narrative analysis and impact studies conducted in the future.
        4,000원
        31.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.
        4,000원
        32.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.
        4,000원
        33.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is to investigate the performance analysis of cooling fan of the IT and electronic device with two different blade types and three different blade numbers of the cooling fan. Velocity, and temperature distributions of fluid over the flow domain of the flow channel are numerically calculated for the optimum design of flow channel with uniform inlet velocity. According to the calculations of convective heat transfer coefficient between blade and atmosphere in the flow domain, case 2 with 6 blases type shows highest performance of the cooling fan shapes in the present cooling fan model considering manufacturing process and cost
        4,000원
        34.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍력터빈 블레이드에 대한 전산유체해석(CFD)을 수행하였다. 이를 위해서 National Renewable Energy Laboratory(NREL)에서 수행하였으며, 다양한 실험 및 해석결과가 공개된 실물크기 풍력터빈 블레이드인 NREL Phase VI를 해석대상으로 하였다. 상업용 범용 전산유체해석코드인 ANSYS-CFX와 파라매트릭 3D CAD 모델을 이용하여 해석을 수행하였으며, 실험결과와 비교하여 연구결과의 타당성을 검토하였다. 다양한 난류모델에 대한 비교연구를 통하여 Shear Stress Transport(SST) k − ω 난류모델의 정확성을 검증하였으며, 유동의 비정상상태를 최소화하기 위해서 0-각도 요(yaw)각을 고려하였다. NREL Phse VI 풍력터빈 블레이드는 2개의 날개를 가졌으며, 비선형 비틀림각과 선형 테이퍼가 고려되었다. 풍력터빈 블레이드가 주축에 대해서 회전하기 때문에 상대속도는 스팬에 대해서 비선형의 관계를 가진다. 따라서 받음각(angle of attack)을 최소화하기 위해서 비선형 비틀림각이 고려되었다. 해석결과의 3차원 풍력특성을 분석하기 위해서, 각 단면의 압력계수 및 이를 적분하여 풍력계수(수직, 접선, 추력, 회전력)를 계산하였다. 풍력터빈 블레이드의 회전속도는 72 RPM으로 고정한 상태에서 다양한 풍속(5m/s, 7m/s, 10m/s, 13m/s, 15m/s, 20m/s, 25m/s) 상태를 해석하였다. 해석결과와 풍동실험결과는 모든 풍속에 대해서 근사한 수치를 나타냈으며, 높은 풍속에서의 풍하면 박리현상에 대한 정확한 유동특성을 해석할 수 있었다.
        4,000원
        36.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is to study on the optimum design of the wind power generation blade with three different shapes of the wind turbine blade and three air input speeds (7, 10, 15m/s). In order to perform this numerical analysis, velocity, pressure, and temperature distributions of fluid over the flow domain of the turbine blade and also pressure coefficient and ratio of the Lift to Drag force are numerically calculated for the best design shape of blade using commercial CFD code. Finally, the energy-efficient and optimum shape of the wind turbine for power generation are determined with the sequence of case1, case2, and case3.
        4,000원
        39.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Instruments for surgical and dental application based on oscillatory mechanics submit unwanted vibrations to the surgeon's and dentist's hands. frequently the weight of the instrument's body is increased to dampen its vibration. Because medical devices to contact with human body directly are sterilized before use, conventional damping method and damper are not good for medical use. For dissipation of vibration, based on recent research regarding the optimization of particle damping, we made a prototype particle damper that dissipate the vibration of oscillatory saw and tested for validation of particle damping. As a result we found that particle damper operate more efficiently than solid mass damper if the geometry of the damper is optimized with respect to the specific amplitude of the vibration.
        4,000원
        40.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lay outs in this thesis is based on basic theories and the test the performance of the product by wind tunnel test and vehicle test. Furthermore, in order to find out the effect of structure change on hub which is one of the components of wind turbine, I compared the actual performance between the existing model and the modified model thoroughly. To improve the performance of wind turbine, I modify the structure of the hub and analysing base model and modify model by using Star-CCM+. As a result, I found out the wing-shaped hub used model stablizes the spin in shorter time than existing model. Therefore, with the optimal blade selection, the structure modification on hub is a considerable variable on wind turbine design which is aiming better performance.
        4,000원
        1 2 3 4