검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,367

        321.
        2022.10 구독 인증기관·개인회원 무료
        Cellulose-based wastes can be degraded into short-chain organic acids at the cementitious radioactive waste repository. Isosaccharinic acid (ISA), one of the main degradation products, can form the chelate complex with metals and radionuclides, and these complexes have a potential that can accelerate to move the radionuclides to far-field from the repository. This study characterized the amount of generated ISA from typical cellulosic materials in the repository. Two different degradation experiments were conducted under alkaline conditions (saturated with Ca(OH)2 at pH 12.4): i) cellulosic material mixture under an opened condition (partially aerobic), and ii) cellulosic material under an anaerobic condition in a nitrogen-purged glove box. In the first case, three different types of cellulosic materials–paper, cotton, and wood– were mixed at the same ratio, and the experiments were carried out at three different temperatures (20°C, 40°C, and 60°C). It revealed that both the cellulose degradation rate and generated ISA concentration were high at high reaction temperatures, and various soluble degradation products such as formic acid and lactic acid were generated. The cellulose degradation in this work seems to still stay at a peeling-off process. In the second study, each type of cellulosic material was applied in its own batch experiments, and the amount of generated ISA was in the order of paper > wood > cotton. The above two experiments are supposed to be a long-term study until the generated ISA reaches an equilibrium state.
        323.
        2022.10 구독 인증기관·개인회원 무료
        Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
        325.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        328.
        2022.10 구독 인증기관·개인회원 무료
        The Deep Borehole Disposal (DBD) method has various advantages, such as minimizing the use of site area and corrosion of the disposal container and improving long-term structural safety. However, it is necessary to review the problems that may occur in various technologies related to the emplacement and retrieval of the disposal container and the sealing of the borehole. Therefore, the purpose of this study is to evaluate the structural integrity of an emplacement and retrieval device (hereinafter, the disposal container connecting device) of a DBD container. The disposal connecting device was evaluated according to ANSI 14.6 and NUREG-0612 standards. The allowable stress should be less than the yield strength under the load condition of 3g. The length of the disposal container connecting device was about 2,900 mm, the diameter was 406 mm, and the weight was about 1.2 tons. In addition, 10 disposal containers weighing up to 2.2 tons were handled. The disposal container connecting device was made of stainless steel, and the maximum operating temperature was about 300°C. For structural evaluation, ABAQUS finite element analysis program was used. The analysis model was modeled only 1/2 part considering symmetry condition. The analysis model was modeled using 410,431 nodes and 344,119 solid elements. Three times load was applied to the weight of the disposal container. Axisymmetric conditions were applied to the symmetrical surface of the disposal container, and vertical restraints were applied to the upper lifting lugs. A surface-to-surface contact condition was applied to the part where the contact occurred. As a result of the analysis, the greatest stress was generated at the part supported by the clamp at the disposal container connector at 168.9 MPa. In the lugs and pins connecting the guide and the connecting device, a stress of 530.1 MPa was generated by shearing. In the bolts of the disposal container connecting device, a stress of 498MPa was generated and the safety margin was 1.73. A stress of 486.1 MPa was generated in the disposal container connecting device, and the safety margin was the smallest 1.16. As a result of the analysis, all components of the disposal container connecting device showed a safety margin of 1.16 or more at the maximum operating temperature and satisfied the allowable stress.
        330.
        2022.10 구독 인증기관·개인회원 무료
        Despite the increasing interest in Deep Borehole Disposal (DBD) for its capability of minimizing disposal area, detailed research about DBD operation system design should be conducted before the DBD can be implemented. Recently, DBD operation system applying wireline emplacement (WE) technique is under study due to its high flexibility and capability of minimizing surface equipment. In this study, a conceptual WE system, and operation procdure is introduced. The conceptual WE system consists of 3 main stations, which from the top are hoisting station (HS), canister connection station (CCS) and basement (BS). In HS, WE is controlled and monitored. The WE is controlled using wireline drum winch and sheaves, and load on wireline is measured using a load cell. HS also has a pressure control system (PCS), which monitors internal pressure of the system, and a lubricator, which act as housing for joint device, allowing the joint device to be easily inserted into the borehole. The joint device is used to connect the disposal canister to wireline for emplacement/retrieval. In CCS, a rail transporter brings a transport cask containing disposal canisters, then the transport cask is connected to the hoisting system and a PCS in the BS. The main component located at canister station are a sliding shielding door (SSD), and a slip. The SSD is used to prevent canister from falling into borehole during the connecting operation and prevent radiation from BS to affect the workers. The slip is located beneath the SSD and is used to hold the disposal canister before it is lowered into the borehole. In BS, PCS is installed to prevent overflow and blowout of borehole fluid. The PCS consists of wireline pressure valve, christmas tree and BOP, which all are a type of pressure valve to seal the borehole and release pressure inside the borehole. The WE procedure starts with transporting transport cask to CCS. The transport cask is connected to lubricator, and PCS. Joint device is lowered down to be connected with disposal canisters, then pulled up to check the load on the wireline. After the check-up, SSD is opened, and disposal canister is lowered into the borehole. When desired depth is reached, joint device is disconnected and retrieved for next emplacement. In this study, the conceptual deep borehole disposal system design implementing WE technique is introduced. Based on this study, further detailed design could be derived in future, and feasibility could be tested.
        334.
        2022.10 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembling, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyro-processing. Also, for the operation of the head-end process, the design of the connecting systems between the down ender and the dismantling process is required. The disassembling process includes apparatus for down ender, dismantling of the SF (Spent Fuel) assembly (16×16 PWR), rod extraction, and cutting of extracted spent fuel rods. The disassembling process has four-unit apparatus, which comprises of a down ender that brings the assembly from a vertical position to a horizontal position, a dismantler to remove the upper and bottom nozzles of the spent fuel assembly, an extractor to extract the spent fuel rods from the assembly, and a cutter to cut the extracted spent fuel rods as a final step to transfer the rod-cuts to the mechanical decladding process. An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the down ender and dismantler, these systems were analyzed and designed, also concept on the interference tools between down ender and dismantler were considered by using the solid works tool.
        337.
        2022.10 구독 인증기관·개인회원 무료
        Radiation dose rates for spent fuel storage casks and storage facilities of them are typically calculated using Monte Carlo calculation codes. In particular, Monte Carlo computer code has the advantage of being able to analyze radiation transport very similar to the actual situation and accurately simulate complex structures. However, to evaluate the radiation dose rate for models such as ISFSI (Independent Spent Fuel Storage Installation) with a lot of spent fuel storage casks using Monte Carlo computational techniques has a disadvantage that it takes considerable computational time. This is because the radiation dose rate from the cask located at the outermost part of the storage facility to hundreds of meters must be calculated. In addition, if a building is considered in addition to many storage casks, more analysis time is required. Therefore, it is necessary to improve the efficiency of the computational techniques in order to evaluate the radiation dose rate for the ISFSI using Monte Carlo computational codes. The radiation dose rate evaluation of storage facilities using evaluation techniques for improving calculation efficiency is performed in the following steps. (1) simplified change in detailed analysis model for single storage cask, (2) create source term for the outermost side and top surface of the storage cask, (3) full modeling for storage facilities using casks with surface sources, (4) evaluation of radiation dose rate by distance corresponding to the dose rate limit. Using this calculation method, the dose rate according to the distance was evaluated by assuming that the concrete storage cask (KORAD21C) and the horizontal storage module (NUHOMS-HSM) were stored in the storage facility. As a result of calculation, the distance to boundary of the radiation control area and restricted area of the storage facility is respectively 75 m / 530 m (KORAD21C case), and 20 m / 350 m (NUHOMS-HSM case).