검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,770

        67.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA) are widely used in industry and agriculture as water softeners, detergents, and metal chelating agents. In wastewater treatment plants, a significant amount of chelating agents can be discharged into natural waters because they are difficult to degrade. Since those compounds affect the mobility of radionuclides or heavy metals in decontamination operations at nuclear facilities and radioactive waste disposal, quantification of the amount of ligand is very important for safe nuclear waste management. To predict the behavior of the main complexation in sample matrices of radioactive wastes, it is essential to evaluate the distribution of the metal-chelating species and their stabilities in order to develop analytical techniques for quantifying chelating agents. We have investigated to collect information on the pH speciation of metal chelation and the stability constants of metal complexes depending on three chelating agents (EDTA, DTPA, and NTA). For example, Zhang’s group recently reported that the initial coordination pH of Cu(II) and EDTA4− is delayed with the addition of Fe(III), and the pH range for the stable existence of [Cu(EDTA)]2− is narrowed compared to when it is alone in the sample matrix. The addition of Fe(III) clearly impacts the chemical states of the Cu(II)-EDTA solution. Additionally, Eivazihollagh’s group demonstrated differences in the speciation and stability of Cu(II) species between Cu(II) and three chelating ligands (EDTA, DTPA, and NTA). This study will be greatly helpful in identifying the sample matrix for binding major chelating agents and metals as well as developing chemically sample pretreatment and separation methods based on the sample matrix. Finally, these advancements will enable reliable quantitative analysis of chelating agents in decommissioning radioactive wastes.
        68.
        2023.11 구독 인증기관·개인회원 무료
        One of the important components of a nuclear fuel cycle facility is a hot cell. Hot cells are engineered robust structures and barriers, which are used to handle radioactive materials and to keep workers, public, and the environment safe from radioactive materials. To provide a confinement function for these hot cells, it is necessary to maintain the soundness of the physical structure, but also to maintain the negative pressure inside the hot cell using the operation of the heating, ventilation, and air conditioning (HVAC) systems. The negative pressure inside the hot cells allows air to enter from outside hot cells and limits the leakage of any contaminant or radioactive material within the hot cell to the outside. Thus, the HVAC system is one of the major components for maintaining this negative pressure in the hot cell. However, as the facility ages, all the components of the hot cell HVAC system are also subject to age-related deterioration, which can cause an unexpected failure of some parts. The abnormal operating condition from the failure results in the increase of facility downtime and the decrease in operating efficiency. Although some major parts are considered and constructed in redundancy and diversity aspects, an unexpected failure and abnormal operating condition could result in reduction of public acceptance and reliability to the facility. With the advent of the 4th Industrial Revolution, prognostics and health management (PHM) technology is advancing at a rapid pace. Korea Hydro & Nuclear Power, Siemens, and other companies have already developed technologies to constantly monitor the integrity of power plants and are applying the technology in the form of digital twins for efficiency and safety of their facility operation. The main point of PHM, based on this study, is to monitor changes and variations of soundness and safety of the operation and equipment to analyze current conditions and to ultimately predict the precursors of unexpected failures in advance. Through PHM, it would be possible to establish a maintenance plan before the failure occurs and to perform predictive maintenance rather than corrective maintenance after failures of any component. Therefore, it is of importance to select appropriate diagnostic techniques to monitor and to diagnose the condition of major components using the constant examination and investigation of the PHM technology. In this study, diagnostic techniques are investigated for monitoring of HVAC and discussed for application of PHM into nuclear fuel cycle facilities with hot cells.
        69.
        2023.11 구독 인증기관·개인회원 무료
        South Korea’s first commercial nuclear reactor, Kori Unit 1, was permanently shut down in 2017, and preparations are currently underway for its decommissioning. After the permanent shutdown, the spent nuclear fuel from the reactor core is removed and stored in a spent fuel storage facility. Subsequently, steps are taken for its permanent disposal, and if a permanent disposal site is not determined, it is stored in an interim storage facility (or temporary storage facility). Therefore, the activation criteria for radiation emergency plans vary depending on the movement of spent nuclear fuel and the storage location. In this study, it reviewed emergency plans in the U.S. NRC Regulatory Guide (Draft) titled ‘Emergency Planning for Decommissioning Nuclear Power Reactors’ to determine the requirements for radiation emergency plans needed for decommissioned nuclear power plants. Additionally, by examining emergency plans applied to decommissioning nuclear power plants in the United States, this study identified emergency plan requirement that could be applicable to future decommissioned nuclear power plants in South Korea. This study will contribute to the establishment of appropriate radiation emergency plans for decommissioning nuclear power plants in Korea for providing accurate information on overseas cases and relevant guidelines.
        70.
        2023.11 구독 인증기관·개인회원 무료
        Detectors utilized for nuclear material safeguards have been using scintillation detectors which are inexpensive and highly portable, and electrically cooled germanium detectors which are expensive but have excellent energy resolution. However, recently IAEA, the only international inspectorate of nuclear material safeguards for the globe, have replaced the existing scintillation detector and electrically cooled germanium detector with a CdZnTe detector owing to the improved performance of room-temperature semiconductors significantly. In this paper, we will examine the spectrum features of the CdZnTe detector such as spectrum shape, energy resolution, and efficiency in the energy region of interest, which are the important characteristics for measuring Uranium enrichment. For this purpose, it would be conducted to compare its spectrum features using CdZnTe, NaI, HPGe detectors. The main energies of interest include 185.7 keV and 1,001 keV, which are the decay energies of uranium 235 and uranium 238. The results of this study will provide a better understanding of the spectral features of various detectors used in uranium enrichment analysis, and are expected to be used as basic data for future related software development.
        71.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear power plant (NPP) decommissioning, ventilation and purification of the building atmosphere are important to create a working environment, ensure worker safety, and prevent the release of gaseous radioactive materials into the environment. The heating, ventilation, and air conditioning (HVAC) system of each building is maintained, modified, or newly installed. In this study, based on APR1400, operation strategies were presented in case of ventilation abnormalities in the reactor containment building (RCB), where highly radioactive particles and high dust are most frequently generated during NPP decommissioning. For research, it was assumed that the entire RCB atmospheric ventilation during decommissioning would use the RCB purge system of the existing NPP and perform continuous ventilation. Additionally, it is assumed that areas where high radiation particles and high dust occur locally, such as reactor containers or internal segments, are sealed with tents and purified using a HEFA filter of a temporary portable HVAC, and a exhaust flow path is connected to the discharge duct of the existing RCB purge system. The possibility of abnormal occurrence was largely divided into two cases. First, when large amounts of uncontrolled pollutants are released into the atmosphere inside the RCB, discharge to the environment is stopped manually or automatically by a modified engineered safety function activation signal (ESFAS). Afterwards, the RCB purge system should be operated in recirculation mode to sufficiently purify the RCB atmosphere with a HEPA filter. Second, when the first train of the low volume purge system is not running due to a failure, standby train should be operated. If both low volume purge trains fail, a high volume purge system is used. Intermittent purge operation is preferred due to large capacity during high volume purge operation. In cases where it is not possible to operate all purge systems due to common issues such as power supply, atmospheric sampling is performed to determine whether to proceed with the work inside RCB.
        72.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        73.
        2023.11 구독 인증기관·개인회원 무료
        The Derived Concentration Guideline Level (DCGL) is required to release the facility from the nuclear safety act at the stage of site restoration of the decommissioning nuclear power plant. In order to evaluate DCGL, there are various requirements, and among them, the selection of input parameters based on the application scenario is the main task. Especially, it is important to select input parameters that reflect site characteristics, and at this time, a single deterministic value or a probabilistic distribution can be applied. If it is inappropriate to apply a particular single value, it may be reasonable to apply various distributions, and the RESRAD code provides for evaluation using probabilistic methods. Therefore, this study aims to analyze the difference between the application of the deterministic method and the application of the probabilistic method to the area and thickness of the contaminated zone among the site characteristics data. This study analyzed the thickness and area of the contaminated zone, and in the case of thickness, the deterministic method was applied by changing the thickness at regular intervals from the minimum depth considered by MARSSIM to the thickness of the unsaturated zone identified in previous research data. In addition, a probabilistic analysis was performed by applying a distribution to the thickness of contaminated zone. Second, for the area of the contaminated zone, the dose was evaluated for each area in consideration of the areas to be considered when deriving Area Factor (AF), and the resulting change in DCGL was observed. As a result, the DCGL tends to decrease as the thickness increases, and it seems to be saturated when the thickness exceeds a certain thickness. Therefore, It was confirmed that the level of saturated values is similar to that of entering a probabilistic distribution, and in the case of a parameter that is reasonable to enter as a distribution rather than as a single value, it is sufficiently conservative to perform a probabilistic evaluation. In the case of area change, the DCGL evaluation result showed that the DCGL increased as the scale decreased. The magnitude of the change varies depending on the characteristics of each radionuclide, and in the case of radionuclides where external exposure gamma rays have a major exposure effect, the change is relatively small. It can be seen that the change in DCGL according to the area has the same tendency as the AF applicable to the survey unit for small survey units applied in the final status survey.
        74.
        2023.11 구독 인증기관·개인회원 무료
        The treatment process for Spent Filter(SF) of Kori-1 was developed that includes the following : 1) Taking out by robot system 2) Screening by ISOCS 3) Collection of representative samples using a sampling machine 4) Compression 5) Immobilization 6) Packaging and nuclide analysis and 7) Delivery/disposal. Although the robot system, ISOCS, sampling machine and immobilization facility are essentially required for building the above processing but decision to build the compression system and nuclide analysis system must be made after reviewing the need and cost benefit for their construction. In addition, for effcient SF treatment, it is necessary to determine the nuclide concentration range of the SF to which immobilization will be applied. In this study, a cost benefit analysis was performed on existing and alternative methods for processes related to compression treatment, nuclide analysis and immobilization methods, which are greatly affected by economics and efficiency according to the design. First, although the disposal cost is reduced with reducing the number of packaging drums by compressed and packaged but the expected benefits not be equal to or greater than the cost invested in building a compression system. As a result, non-compressed treatment of SF is expected to be economical because the construction cost of compression system is more expensive than the benefits of reducing disposal costs by compression. Second, a cost benefit analysis of direct and indirect nuclide analysis methods was performed. For indirect analysis, scaling factors should be developed and the drum scanner suitable for the analysis for DAW should be improved. As a result, direct analysis applied grouping options is expected to be more economical than indirect analysis requiring the cost for developing scaling factors and improving the scanner. Third, it is timeconsuming and inefficient to distinguish and collect filters that are subject to be immobilized according to the waste acceptance criteria among the disorderly stored SFs in the filter rooms. If the benefits of immobilization of the SFs selectively are not greater than the benefits of immobilization of all SFs, it can be economical to immobilize all SFs regardless of the nuclide concentration of them. As a result, it is more economical to immobilize all SFs with various nuclide concentrations than to selectively immobilize them. The conclusion of this study is that it is not only cost-effective but also disposal-effective to design the treatment process of SF to adopt non-compressed processing, direct analysis and immobilization of all SFs.
        75.
        2023.11 구독 인증기관·개인회원 무료
        The purpose of this report is to provide a summary of the Phase 1 Final Status Survey (FSS) Final Report results and overall conclusions which conduct that the Zion Nuclear Power Station (ZNPS) facility and site meets the 25 mrem(0.25 mSv)per year release criterion as established in Nuclear Regulatory Commission Regulation (NRC) 10 CFR 20.1402 “Radiological Criteria for Unrestricted Use”. The FSS results provided assessment and summarize that any residual radioactivity results in a Total Effective Dose Equivalent (TEDE) to an Average Member of the Critical Group (AMCG) that does not exceed 25 mrem per year, and the residual radioactivity has been reduced to levels that are as low as reasonably achievable (ALARA). The release criterion is translated into site-specific Derived Concentration Guideline Levels (DCGLs) for assessment and summary. ZionSolutions, a decommissioning service provider, estimates that a total of four (4) FSS Final Reports be generated and submitted to the NRC during the decommissioning project. ZionSolutions established the Characterization/License Termination (C/LT) Group, within the Radiation Protection division, with sufficient management and technical resources to fulfill project objectives. The C/LT Group is responsible for the safe completion of all surveys related to characterization and final site closure. Approved site procedures and detailed Technical Support Documents (TSD) direct the FSS process to ensure consistent implementation and adherence to applicable requirements. The development and planning phase was initiated in 1999 by the “Zion Station Historical Site Assessment” (HSA) and the initiation of the characterization process for FSS. Develop the information necessary to support FSS design, including the development of Data Quality Objectives (DQOs) and survey instrument performance standards. DQOs are qualitative and quantitative statements derived from the DQOs process that clarify technical and quality objectives. The next step, FSS design utilizes the combination of traditional scanning surveys, systematic sampling protocols and investigative/judgmental methodologies to evaluate survey units relative to the applicable release criteria for open land sample plans. To aid in the development of an initial suite of potential radionuclides of concern for the decommissioning of ZNPS, the analytical results of representative characterization samples collected at the site were reviewed. At this FSS design step, the Radionuclides of Concern (ROC) are determined. As Co-60 and Cs-137 account for 99.5% of the analysis results of concrete core sampling data form ZNPS’s Containment Building and Auxiliary Building, they are determined and used as the basic ROC in the survey design. Additionally, site information is described and Historical Site Assessment (HSA) is performed. Data collected for the initial HSA will be used to establish the initial regional survey unit and corresponding MARSSIM classification. Next, an assessment of the collected data is performed using the DQO process, and a survey methodology is established by selecting a sampling method and measuring instrumentation. These result judgments provide guidance for C/LT Engineer to interpret findings using the Data Quality Assessment (DQA) process, which analysis Recorded data, Missing values, Deviation from established procedure, and Analysis flags. In conclusion, FSS is the process used to demonstrate that the ZNPS facility and site comply the radiological criteria for unrestricted use specified in 10 CFR.20. The purpose of FSS Sample Plan is to describe the methods to be used in planning, designing, conducting, and evaluating the FSS.
        76.
        2023.11 구독 인증기관·개인회원 무료
        As unit 1 of Kori was permanently shut down in June 2017, domestic nuclear industry has entered the path of decommissioning. The most important thing in decommissioning is cost reduction. And volume reduction of radioactive waste is especially important. According to the IAEA report, more than 4,000 tons of metallic waste is generated during the decommissioning of a 1,000 MWe reactor and most of these wastes are LLW or VLLW. To reduce amount of metallic waste dramatically, we should choose efficient decontamination method. In this study, we conducted dry ice and bead blasting decontamination. We prepared Inconel-600 and STS-304 specimen with dimensions of 30 mm × 30 mm × 5 mm. Loose and fixed contamination was applied on the surface of specimen using SIMCON method. Bead and dry-ice blasting was conducted by spraying alumina and dry ice pellet at the same pressure and distance for the same time. The removal of loose contamination was observed using microscope. It was found that contaminants are significantly removed using both dry ice blasting and bead blasting. However, some abrasive material remained on the surface of specimen. The removal of fixed contamination was verified by weight comparison before and after experiment and cobalt concentration comparison before and after experiment using X-ray Fluorescence Spectroscope (XRF). At least 90% of the cobalt was removed, but some abrasive particle was also remained on the surface of specimen. In this study, it is confirmed that the effectiveness of manufacturing a large-scale abrasive decontamination facility, and it is expected that this technology can be used to effectively reduce the amount of metallic waste generated during decommissioning.
        77.
        2023.11 구독 인증기관·개인회원 무료
        Domestic commercial low- and intermediate-level radioactive waste storage containers are manufactured using 1.2 mm thick cold-rolled steel sheets, and the outer surface is coated with a thin layer of primer of 10~36 μm. However, the outer surface of the primer of the container may be damaged due to physical friction, such as acceleration, resonance, and vibration during transportation. As a result, exposed steel surfaces undergo accelerated corrosion, reducing the overall durability of the container. The integrity of storage containers is directly related to the safety of workers. Therefore, the development of storage containers with enhanced durability is necessary. This paper provides an analysis of mechanical properties related to the durability of WC (tungsten carbide)-based coating materials for developing low- and intermediate-level radioactive waste storage containers. Three different WC-based coating specimens with varied composition ratios were prepared using HVOF (high-velocity oxy-fuel) technique. These different specimens (namely WC-85, WC-73, and WC-66) were uniformly deposited on cold-rolled steel surfaces ensuring a constant thickness of 250 μm. In this work, the mechanical properties of the three different WCbased coaitng materials evaluated from the viewpoints of microstructure, hardness, adheision force between substrate and coating material, and wear resistance. The cross-sectional SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) images revealed that elements W (tungsten), C (carbon), Ni (nickel), and Cr (chromium) were uniformly distributed within the each coating layers which was approximately 250 μm thick. The average hardness values of HWC-85 and HWC-73 were found to be 1,091 Hv (Vickers Hardness) and 1,083 Hv, respectively, while the HWC-66 exhibited relatively lower hardness value of 883 Hv. This indicates that a higher WC content results in increased hardness. Adhesion force between and substrates and coating materials exceeded 60 MPa for all specimens, however, there were no significant differences observed based on the tungsten carbide content. Furthermore, a taber-type abrasion tester was used for conducting abrasion resistance tests under specific conditions including an H-18 load weight at 1,000 g with rotational speed set at 60 RPM. The abrasion resistance tests were performed under ambient temperatures (RT: 23±2°C) as well as relative humidity levels (RH: 50±10%). Currently, the ongoing abrasion resistance tests will include some results in this study.
        78.
        2023.11 구독 인증기관·개인회원 무료
        As the acceptance criteria for low-intermediate-level radioactive waste cave disposal facilities of Korea Radioactive Waste Agency (KORAD) were revised, the requirements for characterization of whether radioactive waste contains hazardous substances have been strengthened. In addition, As the recent the Nuclear Safety and Security Commission Notice (Regulations on Delivery of Low- Medium-Level Radioactive Waste) scheduled to be revised, the management targets and standards for hazardous substances are scheduled to be specified and detailed. Accordingly, the Korea Atomic Energy Research Institute (KAERI) needs to prepare management methods and procedures for hazardous substances. In particular, in order to characterize the chemical requirements (explosiveness, ignitability, flammability, corrosiveness, and toxicity) contained in radioactive waste, it must be proven through documents or data that each item does not contain hazardous substances, and quality assurance for the overall process must be provided. In order to identify the characteristics of radioactive waste that will continue to be generated in the future, KAERI needs to introduce a management system for hazardous substances in radioactive waste and establish a quality assurance system. Currently, KAERI is thoroughly managing chelates (EDTA, NTA, etc.), but the detailed management procedures for hazardous substances related to chemical requirements in radioactive waste in the radiation management area specified above are insufficient. The KAERI’s Laboratory Safety Information Network has a total periodic regulatory review system in place for the purchase, movement, and disposal of chemical substances for each facility. However, there is no documents or data to prove that the hazardous substances held in the facility are not included in the radioactive waste, and there are no procedures for managing hazardous substances. Therefore, it is necessary to establish procedures for the management of hazardous substances, and we plan to prepare management procedures for hazardous substances so that chemical substances can be managed according to the procedures at each facility during preliminary inspection before receiving radioactive waste. The procedure provides definitions of terms and types of management targets for each characteristic of the chemical requirements specified above (explosiveness, ignition, flammability, corrosiveness, and toxicity). In addition, procedure also contains treatment methods of radioactive waste generated by using hazardous substances and management methods of in/out, quantity, history of that substances, etc. As the law is revised in the future, management will be carried out according to the relevant procedures. In this study, we aim to present the hazardous substance management procedures being established to determine whether radioactive waste contains hazardous substances in accordance with the revised the notice and strengthened acceptance criteria. Through this, we hope to contribute to improving reliability so that radioactive waste could be disposed of thoroughly and safely.
        79.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear power plant environments, the analysis of gamma-emitting waste materials with complex shapes can be challenging. ISOCS (In-Situ Objective Counting System) is employed to measure the gamma-emitting radionuclide concentrations. However, it is crucial to validate the accuracy of ISOCS measurements. This study aims to validate the accuracy of ISOCS measurement results for spent filters. The ISOCS measurement process begins with modeling and efficiency calculations of the target spent filters using ISOCS software. ISOCS offers the advantage of direct measurement assessment by incorporating shielding materials and collimators into the detector efficiency calculation during the modeling process, without the need for separate efficiency correction sources. To validate the accuracy of ISOCS measurement results, the measured radioactivity values were used as input data for the MicroShield computer code to derive dose rates. These dose rates were then compared to the dose rates measured on-site, confirming the reliability of ISOCS measurements. In the field, ISOCS gamma measurements and surface dose rates were measured for three Cavity filters and four RCP Seal Injection filters. The measured dose rate for the Cavity filters was around 270 Svhr, and the computed values using MicroShield showed an error of approximately 12%. Despite modeling and calculation errors in computer analysis and potential uncertainties in the measurement environment and instrument, the computed values closely matched the measured values. However, the measured dose rate for the RCP Seal Injection filters ranged 2.9~8 Svhr, which is very low and close to background levels. When compared to the results of computer analysis, an error ranging from 27% to 97% was observed. It is concluded that validating the accuracy in the low dose rate range close to background levels is challenging through a comparison of calculated and measured dose rates.
        80.
        2023.11 구독 인증기관·개인회원 무료
        This study focuses on the development of coatings designed for storage containers used in the management of radioactive waste. The primary objective is to enhance the shielding performance of these containers against either gamma or neutron radiation. Shielding against these types of radiation is essential to ensure the safety of personnel and the environment. In this study, tungsten and boron cabide coating specimens were manufactured using the HVOF (High-Velocity Oxy Fuel) technuqe. These coatings act as an additional layer of protection for the storage containers, effectively absorbing and attenuating gamma and neutron radiation. The fabricated tungsten and boron carbide coating specimens were evaluated using two different testing methods. The first experiment evaluates the effectiveness of a radiation shielding coating on cold-rolled steel surfaces, achieved by applying a mixture of WC (Tungsten Carbide) powders. WC-based coating specimens, featuring different ratios, were prepared and preliminarily assessed for their radiation shielding capabilities. In the gamma-ray shielding test, Cs-137 was utilized as the radiation source. The coating thickness remained constant at 250 μm. Based on the test results, the attenuation ratio and shielding rate for each coated specimen were calculated. It was observed that the gammaray shielding rate exhibited relatively higher shielding performance as the WC content increased. This observation aligns with our findings from the gamma-ray shielding test and underscores the potential benefits of increasing the tungsten content in the coating. In the second experiment, a neutron shielding material was created by applying a 100 μm-thick layer of B4C (Boron Carbide) onto 316SS. The thermal neutron (AmBe) shielding test results demonstrated an approximate shielding rate of 27%. The thermal neutron shielding rate was confirmed to exceed 99.9% in the 1.5 cm thick SiC+B4C bulk plate. This indicates a significant reduction in required volume. This study establishes that these coatings enhance the gamma-ray and neutron shielding effectiveness of storage containers designed for managing radioactive waste. In the future, we plan to conduct a comparative evaluation of the radiation shielding properties to optimize the coating conditions and ensure optimal shielding effectiveness.
        1 2 3 4 5