검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,256

        101.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.
        4,500원
        102.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diabetic encephalopathy is a major complication with cognitive impairment and neurodegeneration in patients with type 1 or type 2 diabetes mellitus (DM). DM-induced glucolipotoxicity is a risk factor for Alzheimer’s disease–like phenotype, including amyloidogenesis, tau hyperphosphorylation, and neuronal apoptosis. Although the detailed mechanism underlying the pathogenesis of diabetic encephalopathy remains unclear, mitochondrial oxidative stress is emerging as a key factor for diabetic complications and neurodegeneration. A deeper understanding of the regulatory mechanism of mitochondrial oxidative stress under hyperglycemic conditions will provide insights into the development of therapeutic strategies for diabetic encephalopathy. Here, we review the role of mitochondrial oxidative stress in diabetic encephalopathy and the regulatory mechanisms by which high glucose induces the generation of mitochondrial reactive species oxygen species in neuronal cells. This review also summarizes the mitochondrial-dependent and -independent pathways (O-linked-N-acetylglucosaminylation, calcium, and glycogen synthase kinase 3β signaling) that regulate mitochondrial oxidative stress in a DM model.
        5,200원
        103.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 어머니의 주중 미디어 놀이 횟수가 유아의 놀이상호작용에 미치는 영향에서 자기통제와 주의집중문제의 매개역할을 살펴보는 것이다. 이를 위해 육아정책연구소의 한국아동패널 7차년도 데이터를 사용했고, 자료는 R 4.1.3과 PROCESS macro v4.1 for R로 분석했다. 본 연구의 결과는 다음과 같다. 첫째, 어 머니의 주중 미디어 놀이 횟수는 유아의 자기통제에 부적 영향, 주의집중문제에 정적 영향을 미쳤다. 또래 놀이상호작용에 대해 자기통제는 정적 영향, 주의집중문제는 부적 영향을 미쳤다. 자기통제는 주의집중문제 에 부적 영향을 미쳤다. 둘째, 어머니의 주중 미디어 놀이 횟수가 유아의 또래놀이상호작용에 미치는 영향 에서 자기통제와 주의집중문제는 각각 부적 매개효과가 나타났다. 마지막으로 어머니의 주중 미디어 놀이 횟수가 유아의 또래놀이상호작용에 미치는 영향에서 자기통제와 주의집중문제는 부적 직렬다중매개효과가 있었다. 본 연구의 결과는 유아의 자기통제와 주의집중문제가 어머니의 주중 미디어 놀이 횟수와 또래놀이 상호작용을 매개하는 주요한 요인임을 시사한다.
        4,000원
        113.
        2022.10 구독 인증기관·개인회원 무료
        Republic of Korea (ROK) is operating the Integrated Environmental Radiation Monitoring Network (IERNet) in preparation for a radioactive emergency based on Article 105 of the Nuclear Safety Act (Monitoring of Nationwide Radioactive Environment). 215 radiation monitoring posts are monitoring a wide area, but their location is fixed, so they can’t cover areas where the post is not equipped around the Nuclear Power Plants (NPPs). For this, a mobile radiation monitoring system was developed using a drone or vehicle. However, there are disadvantages: it is performed only at a specific cycle, and an additional workforce is required. In this study, a radiation monitoring system using public transportation was developed to solve the above problems. Considering the range of dose rates from environmental radiation to high radiation doses in accidents, the detector was designed by combining NaI (TI) (in the low-dose area) and GM detector (in the high-dose area). Field test was conducted by installed on a city bus operated by Yeonggwang-gun to confirm the performance of the radiation monitoring system. As a result of the field test, it was confirmed that data is transmitted from the module to the server program in both directions. Based on this study, it will be possible to improve the radiation monitoring capability near nuclear facilities.
        114.
        2022.10 구독 인증기관·개인회원 무료
        Hydrogen isotopes (H, D, T) separation technologies have received great interest for treatments of tritiated liquid waste produced in Fukushima. In addition, the separated deuterium and tritium can be utilized in various industries such as semiconductors and nuclear fusion as expensive and rare resources. However, separating hydrogen isotopes in gas and liquid forms still requires energyintensive processes. To improve efficiency and performance of hydrogen isotope separation, we are developing water electrolysis, cryosorption, distillation, isotope exchange, and hydrophobic catalyst technologies. Furthermore, an analytical method is studied to evaluate the separation of hydrogen isotopes. This presentation introduces the current status of hydrogen isotope research in this research group.
        115.
        2022.10 구독 인증기관·개인회원 무료
        Organic scintillator is easy to manufacture a large size and the fluorescence decay time is short. However, it is not suitable for gamma measurement because it is composed of a low atomic number material. Organic scintillation detectors are widely used to check the presence or absence of radiation. The fluorescence of organic scintillators is produced by transitions between the energy levels of single molecules. In this study, an organic scintillator development study was conducted for use in gamma measurement, alternative materials for secondary solute used in basic organic scintillators were investigated, and the availability of alternative materials, detection characteristics, and neutron/gamma identification tests were performed. In other words, a secondary solute showing an improved energy transfer rate than the existing material was reported, and the performance was evaluated. 7-Diethylamino -4-methylcoumarin (DMC), selected as an alternative material, is a benzopyrone derivative in the form of colorless crystals, has high fluorescence and high quantum yield in the visible region, and has excellent light stability. In addition, it has a large Stokes shift characteristic, and solubility in solvent is good. Through this study, it was analyzed that the absorption wavelength range of DMC coincided with the emission wavelength range of PPO, which is the primary solute. Through this study, it was confirmed that the optimal concentration of DMC was 0.04wt%. As a result of performing gamma and neutron measurement tests using a DMC-based liquid scintillator, it showed good performance (FOM=1.42) compared to a commercial liquid scintillator. Therefore, the possibility of use as a secondary solute was demonstrated. Based on this, if studies on changes in the composition of secondary solute or the use of nanoparticles are conducted, it will be possible to manufacture and utilize a scintillator with improved efficiency compared to the existing scintillator.
        116.
        2022.10 구독 인증기관·개인회원 무료
        A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
        117.
        2022.10 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, the structure must be made to a disposable size. In general, the cutting process is essential when dismantling a nuclear power plant. Mainly, thermal cutting method is used to cutting metal structures. The aerosols generated during thermal cutting have a size distribution of less than 1 μm. The contaminated structures are able to generate radioactive aerosols in the decommissioning. Radioactive aerosols of 1 μm or less are deposited in the respiratory tract by workers’ breathing, causing the possibility of internal exposure. Therefore, workers must be protected from the risk of exposure to radioactive aerosols. Prior knowledge of aerosols generated during metal cutting is important to ensure worker safety. In this study, the physical and chemical properties of the aerosol were evaluated by measuring the number and mass concentrations of aerosols generated when cutting SUS304 and SA508 using the laser cutting method. High-resolution aerosol measuring equipment (HR-ELPI+, DEKATI) was used to measure the concentration of aerosols. The HR-ELPI+ is an impactor-type aerosol measuring equipment that measures the aerosol number concentration distribution in the aerodynamic diameter range of 6 nm to 10 um in real-time. And analyze the mass concentration of the aerosol according to the diameter range through the impactor. ICP-MS was used for elemental mass concentration analysis in the aerosol. Analytical elements were Fe, Cr, Ni and Mn. For the evaluation of physical and chemical properties, the MMAD of each element and CMAD were calculated in the aerosol distribution. Under the same cutting conditions, it was confirmed that the number concentration of aerosols generated from both materials had a uni-modal distribution with a peak around 0.1 um. CMAD was calculated to be 0.072 um for both SUS304 and SA508. The trend of the CMAD calculation results is the same even when the cutting conditions are changed. In the case of MMAD, it was confirmed that SUS304 had an MMAD of around 0.1 μm in size for only Fe, Cr and Mn. And SA508, Fe, Cr, Ni and Mn were all confirmed to have MMAD around 0.1 μm in size. The results of this study show that a lot of aerosols in the range of less than 1 μm, especially around 0.1 μm in size, are generated when metal is cut using laser cutting. Therefore, in order to protect the internal exposure of workers to laser metal cutting when decommissioning NPPs, it is necessary to protect from nano-sized aerosols beyond micron size.
        118.
        2022.10 구독 인증기관·개인회원 무료
        Colloid migration is an important topic in post-closure safety assessment of radioactive waste repository as radionuclide can be adsorbed onto colloidal particles and migrated along with the colloids. This would reduce retardation of radionuclide migration, thus increasing the released concentration into biosphere. Recently, glass fiber waste has been found to contain small sized crushed glass fiber particles (GFPs), and concerns regarding the colloidal impact of GFP is being discussed. In this study, relevance of assessing GFPs facilitated radionuclide transport in the disposal environment of 1st phase disposal facility. Colloidal impact assessment can be divided into two sections, colloid mobility, and colloid sorption assessments. Considering GFP being denser than water, fluid velocity of 1st phase disposal facility is too slow to initiate movement of such dense particles. GFPs would remain settled, and no colloidal impact is expected. In this study, sorption assessment mainly focused to analyze the possible impact if migration of GFP does occur. The GFP is mainly composed of SiO2 and few other metal oxides. Due to high composition of SiO2 in the GFPs, negative surface charge is induced onto the surface of the GFPs in alkaline environment. This negatively charged surface can attract free positive ions (ex. Ni, Co, Fe, etc.) in the repository, and these ions would be adsorbed onto the surface of the GFPs via coulomb force. Thus, if GFPs migrate, colloid facilitated radionuclide transport can be expected. However, before being released into the biosphere, particles must pass through the engineered and natural barriers, where ion-colloid-rock interactions could result in transfer of radionuclide from one media to another. At Naka Research Center, Japan, ion-colloid-rock interactions are experimented with bentonite colloid, and the result showed that despite colloid’s sorption ability was 10 times higher than the barrier material, the overall released radionuclide concentration has negligible change. To reflect such phenomenon, coulomb attractive force of GFPs and concrete is calculated and compared, which the result showed that glass fiber was 10 times weaker than concrete. Considering the Japan’s experimental result, glass fiber facilitated transport would not enhance the radionuclide release into the biosphere. Nonetheless, assuming GFPs being mobile in 1st phase disposal facility, GFPs’ sorption ability is found to be negligible compared to the concrete of the repository, thus radionuclide transport is not expected to be enhanced. In future, this study could be used as basis for further colloidal impact analysis for the safety assessment of the repository.