Mathematically modeling photosynthesis helps to interpret gas exchange in a plant and estimate the photosynthetic rate as affected by environmental factors. Notably, the photosynthetic rate varies among leaf vertical positions within a single plant. The objective of this study was to measure the distinct photosynthetic rate of lily (Lilium Oriental Hybrid ‘Casa Blanca’) at the upper, medium, and basal leaf positions. Subsequently, the FvCB (Farquhar-von Caemmerer-Berry) photosynthesis model was employed to determine the parameters of the model and compared it with a rectangular hyperbola photosynthesis model. The photosynthetic rates were measured at different intracellular CO2 concentrations () and photosynthetic photon flux density (PPFD) levels. SPAD values significantly decreased with lowered leaf position. The photosynthetic rates at the medium and basal leaves were lower compared with the upper leaves. FvCB model parameters, and , showed no significant difference between the medium and basal leaves. Estimated photosynthetic rates from derived parameters by the FvCB model demonstrated over 0.86 of R2 compared with measured data. The rectangular hyperbola model tended to overestimate or underestimate photosynthetic rates at high with high PPFD levels or low with high PPFD levels, respectively, at each leaf position. These results indicated that the parameters of the FvCB model with different leaf positions can be used to estimate the photosynthetic rate of lily.
Salinity stress is a major threat to plant growth and development, affecting crop yield and quality. This study investigated the effects of different salinity levels on photosynthetic responses and bulb growth of Lilium LA hybrid “‘Serrada’.” Plants were irrigated with 1 L of 0, 200, and 400 mM NaCl solutions every two weeks for 14 weeks in a greenhouse. At the end of the cultivation period, the substrate pH decreased, and electrical conductivity increased with increasing salinity. Regardless of salinity levels, the days to flowering and number of flowers were similar among treatments. In contrast, the flower width, plant height, number of leaves, and leaf area decreased with increasing NaCl concentrations. Although there were no differences in the photosystem II (PSII) operating efficiency and maximum quantum yield of PSII, net CO2 assimilation rates (An) and stomatal conductance (gs) were significantly reduced at 200 and 400 mM NaCl solutions compared to the control. At 400 mM NaCl solution, bulb diameter and weight significantly decreased at the end of the experiment. These results suggest that bulb growth inhibition could be attributed to limiting photosynthetic rate and stem growth. This finding suggests that salinity mitigation is necessary to maintain plant growth and photosynthetic capacity in lily cultivation on salt-affected soils.
Selenium (Se) is known as an antioxidant mineral and heme iron is a major source for iron intake which can promote carcinogenesis in the body. This study was to investigate the effect of Se on heme-aggravated colon carcinogenesis in mice. Three experimental groups included control [normal diet + AOM (10 mg/kg body weight in saline)/DSS (2% in the drinking water)], [AOM/DSS + hemin (534 mg/kg body weight in CMC)], and [AOM/DSS + hemin + Se (2.82 mg/kg diet in CMC)] groups. Colonic mucosa were stained with 0.3% methylene blue and the colonic polyps, aberrant crypt (AC) and aberrant crypt foci (ACF) were counted. Lipid peroxidation in liver was evaluated by the thiobarbituric acid-reactive substances (TBARS) assay. The number of polyps in the hemin + Se group was 31.6% lower than that in the control group, and 41.4% lower than that in the hemin group. The number of AC in the hemin + Se group was 42.8% lower than that in the control group, and 49.1% lower than that in the hemin group. The number of ACF in the hemin + Se group was 49.0% lower than that in the control group, 45.7% than that in the hemin group. Hepatic TBARS level in the hemin + Se group was significantly low compared with the control group or the hemin group (p<0.05). These findings suggest that Se treatment may be protective against colon carcinogenesis promoted by a high heme-containing diet.
Colorectal cancer causes the most cancer-associated death worldwide, having a high cancer incidence. Pectin is a complex polysaccharide present in various fruits, emerging as an anti-carcinogenic candidate. Although pectin has a suppressive capacity for colon carcinogenesis, the effect of reactive oxygen species (ROS) generation and colonic aberrant foci formation in the colon carcinogenesis mouse model remains unclear. Therefore, this study investigates the regulatory effect of pectin supplementation on colon carcinogenesis induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice. In an animal experiment, thirty male institute for cancer research (ICR) mice were divided into two experimental groups; AOM/DSS (control group) and AOM/DSS + pectin (5% in drinking water). Furthermore, the number of aberrant crypt foci (ACF) and aberrant crypt (AC) on colonic mucosa were counted, and thiobarbituric acid-reactive substances (TBARS) assay was performed to estimate lipid peroxidation in feces. Pectin treatment significantly decreased the number of ACF and AC per colon compared with the control. Additionally, fecal TBARS level in the pectin group was significantly lower than those in the control group. Conclusively, these findings indicate that pectin-inhibited hyperplastic alteration and oxidative stress suppress colitis-associated colon carcinogenesis.
Colon cancer has been considered a leading cause of cancer-associated death. Folic acid is a vitamin necessary for cellular physiological functions and cell viability. However, the association between folic acid intake and colon cancer has been examined in several prospective cohort studies are controversial. This study investigated the effects of folate intake on colon carcinogenesis and oxidative stress in an azoxymethane (AOM)/dextran sodium sulfate (DSS) institute for cancer research (ICR) mouse model. Thirty male ICR mice (5 weeks old) were divided into the control group and the experimental group supplied 0.03% folic acid via drinking water (50 mL/week/mouse) for 6 weeks. To induce colonic pre-neoplastic lesions, the animals were subcutaneously injected three times weekly with AOM (10 mg/kg body weight), followed by 2% DSS in drinking water for a week. Folic acid supplementation significantly suppressed the total number of aberrant crypt foci and aberrant crypts. Histological image data showed that folic acid supplementation attenuated neoplastic change. In addition, we measured the thiobarbituric acid reactive substances concentration of dry feces samples to identify the effect of folic acid on reactive oxygen accumulation. The folic acid supplementation group had reduced reactive oxygen species levels in dry feces compared to the control group. In conclusion, these findings indicate that folic acid suppresses colon carcinogenesis and oxidative stress in an AOM/DSS mouse model.
The content of harmful materials was investigated for coffee beans sold in Daejeon. Total 79 samples were analysed and 213 residual pesticides and 2 heavy metals were analysed simultaneously by GC-MS/MS, GC-NPD, GC-ECD, LC-MS/MS and ICP-MS. The instrumental method was validated with limit of detection (LOD), limit of quantification (LOQ), the linearity of standard curves. LOD of the residual pesticides was between 0.0003 to 0.0021 mg/kg, LOQ of the residual pesticides was between 0.0008 to 0.0064 mg/kg. LOD of the heavy metals was between 0.0077 to 0.0079 μg/kg, LOQ of the heavy metals was between 0.0233 to 0.0239 μg/kg. The linearity correlation coefficient for the calibration curve was between 0.9929 to 0.9999 and the recovery rate was between 95.4% to 106.1%. According to the monitoring of residual pesticides and heavy metals, no pesticide was detected in all coffee bean samples. 88.6% (70 samples) of analysed total 79 coffee beans contained at least 1 heavy metal but there was no sample which exceeded the maximum residual limit. Risk assessment was also carried out based on the content of heavy metals detected in coffee beans. The carcinogenic risk assessment to heavy metals showed that all cancer-risk (CR) values were below 10–6 and it meant that the CR due to heavy metals intake was evaluated as safe. The non-carcinogenic risk assessment to heavy metals showed that all hazard index (HI) were below 1, which was considered acceptable at the current level of exposure. The %PTWI values of lead and cadmium for 55 roasted coffee bean samples were 0.09% and 0.04% respectively, compared with the reference values. This results indicate that there is almost no health risk from heavy metal intake through the consumption of coffee beans in circulation in Daejeon.
Rabies is a zoonotic disease that is caused by rabies virus and transmitted only in mammals. Domestic dogs are the most common reservoir of the virus, which is associated with more than 99% human deaths caused by dog-mediated rabies in the world. Rabies is one of the most fatal diseases, but it is fully preventable in animals by vaccination. Serological test of rabies virus antibody for samples collected from dogs and cats in Seoul during 2017–2019 was carried out in this study. To investigate antibody seroprevalence of rabies virus for dogs and cats, 2,769 serum samples were taken from 2,408 dogs and 361 cats in various regions of Seoul during 2017– 2019. Antibodies to rabies virus were detected by an indirect ELISA. Of 2,769 tested animal sera, 934 (33.7%) were positive; 886 (36.8%) of 2408 dogs and 48 (13.3%) of 361 cats. Of 990 companion animals, 547 (55.3%) was positive and 387 (21.8%) of 1779 stray animals was positive. These results indicate that antibody seroprevalence to rabies virus is still not enough to prevent rabies and rabies vaccination is required to enhance the antibody seroprevalence for rabies. To improve the situation, much public awareness and policy is needed to prevent the rabies. In addition, reducing stray animals and keeping companion animals from contact with wild animals are indispensable for the prevention of rabies.
Colon cancer is known as the third most widespread cancer in the world. The interaction of heme-iron and ascorbic acid (AA) in colon carcinogenesis is not evident. Hemin (ferric chloride heme) is an iron-containing porphyrin with chlorine that can be formed from a heme group. The purpose of this study was to investigate the protective effect of AA on the formation of pre-neoplastic lesions induced by azoxymethane (AOM)/dextran sodium sulfate (DSS) plus hemin in mice. Forty-five ICR male mice were divided into three experimental groups; AOM/ DSS treatment (control group), hemin (2 g hemin/kg of b.w.), hemin + AA (1.0% in drinking water). The mice had three s.c. injections (0–2nd weeks of the experiment) of AOM (10 mg/kg b.w.) weekly and 2% DSS as drinking water for the next one week and the animals fed on AIN-76A purified rodent diet for 6 weeks. The numbers of aberrant crypt foci (ACF) and aberrant crypts (ACs) in colonic mucosa were counted after methylene blue staining. Lipid peroxidation in feces was measured by the thiobarbituric acid-reactive substances (TBARS) assay. The numbers of ACF and ACs per colon significantly increased in Hemin group compared to the control group. However, the numbers of ACF and ACs per colon notably decreased in hemin + AA group compared to the control group or hemin group (p<0.05). In feces, the TBARS value of hemin group was higher than the control group (p<0.01). The TBARS value of hemin + AA group was slightly decreased compared to Hemin group. These results indicate that hemin can promote the experimental colon carcinogenesis in ICR mice. On the other hand, additional supplement of AA via drinking water has a protective effect against the colon carcinogenesis. The related mechanisms need to be illustrated by further studies in future.
Globally, colon cancer is increased gradually and known as one of the major causes of cancer death. Stevia, a substitute of sugar, is known to have many components including alpha-tocopherol and anthocyanin etc, as antioxidants. This study's purpose is to investigate whether stevia plant extract can have a protective effect against colon carcinogenesis induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice. Total 30 male ICR mice were divided into 2 groups; AOM/DSS treatment (control group), AOM/DSS + stevia extract (0.5%, in drinking water). After acclimation for 1 week, five weeks old mice received three intraperitoneal AOM (10 mg/kg b.w.) injections weekly for 3 weeks (0–2nd weeks of the experiment) and 2% DSS as drinking water for the next one week. AIN-76A purified rodent diet and 0.5% stevia extract water were supplied to the animals for 6 weeks. The colons of mice were collected and the number of aberrant crypt foci (ACF) and aberrant crypts (ACs) in colonic mucosa were counted after staining with methylene blue. Malondialdehyde (MDA) concentration in feces were determined. The numbers of ACF and ACs were significantly (p<0.01) decreased in stevia-treated group compared with the control group. The MDA concentration in feces was also significantly (p<0.01) decreased in stevia-treated group compared with the control group. In histopathology of colonic epithelium, hyperplasia of colonic epithelium was less observed in steviatreated group. These results indicate that stevia has a protective effect against colon carcinogenesis induced by AOM/DSS in mice and further study needs to illustrate the protective mechanisms.
Excessive intake of red meat has been associated with colon carcinogenesis. The effect of hemin and zinc on colon carcinogenesis was investigated in male ICR mice. After acclimation for 1 week, five-week-old mice received three s.c. injections (0-2nd weeks of the experiment) of azoxymethane (AOM; 10 mg/kg b.w.) weekly and were treated by 2% dextran sodium sulfate (DSS) in drinking water for the next 1 week to induce aberrant crypt foci (ACF). Mice were fed on AIN-76A purified rodent diet for 6 weeks. There were three experimental groups; control, hemin, and hemin + zinc groups. The daily oral doses of hemin and zinc were 534 mg/kg and 55 mg/kg b.w., respectively. After staining colonic mucosa with 0.2% methylene blue, the ACF, aberrant crypts (AC), and polyps were counted. Lipid peroxidation in liver was evaluated by thiobarbituric acid-reactive substances (TBARS) assay. The numbers of AC, ACF, large ACF (i.e., ≥4 AC/ACF), and polyps in the hemin group were higher than those in the control group. In hemin + zinc group, the numbers of AC, ACF, large ACF were significantly lower compared to the hemin or control groups (p < 0.05), and the number of polyps was also significantly lower compared to that in the hemin group (p < 0.05). The TBARS level in the livers of the hemin + zinc group was significantly lower than that of the hemin group (p < 0.05). These results suggest that hemin enhances colon carcinogenesis and that co-treatment with zinc can protect against the induction of colon carcinogenesis.
Clostridium perfringens (C. perfringens) may cause diarrhea and enterotoxemia in adult and young livestock, leading to problems in the production and management of farms. Four hundred fecal samples were collected from 25 goat farms located in Gyeongsangbuk-do Province in the Republic of Korea. Sixteen C. perfringens strains were isolates from fecal samples, and the isolates were identified as type A (n=11) and type D (n=5). Additionally, α- and ε-toxin genes were detected in 16 and 5 strains by PCR, respectively, and the enterotoxin gene was presented in 2 strains. The antibiotic susceptibility test was performed using the disk diffusion method and E-test method. In the disk diffusion method, ampicillin (n=16) and chloramphenicol (n=15) were highly susceptible to 16 C. perfringens isolates. In the E-test method, ampicillin, amoxicillin, amoxicillin/clavulanic acid and meropenem were susceptible to more than 14 of 16 C. perfringens isolates. This study indicates that administration of antibiotics such as ampicillin, amoxicillin/clavulanic acid and meropenem can prevent and treat C. perfringens infections in goats.
This study investigated the characteristics of obesity induced by a high-fat diet (HD) over 13 weeks in Rhbdf2 gene knockout (KO) mice. Forty 7-week-old Rhbdf2 wild and KO mice were used and the mice were divided into 4 groups: Wild-ND (n=10, Rhbdf2 wild mice, normal diet (ND)), Wild-HD (n=10, Rhbdf2 wild mice, HD), KO-ND (n=10, Rhbdf2 KO mice, ND) and KO-HD (n=10, Rhbdf2 KO mice, HD). The relative epididymal fat weight in KO-HD was significantly increased compared with that in KO-ND (P<0.01). The relative liver and spleen weights in KO-HD were decreased compared with those in Wild-HD (p < 0.05) and KO-ND (p < 0.01). The mRNA expression of SOD1 in KO-ND was significantly reduced compared with that in Wild-ND (p < 0.05). In Wild-ND and HD, the mRNA expressions of TNF-α and IL-6 in epididymal fat were significantly increased compared with those in KO-ND and HD (p < 0.01). A significant increase of TNF- α and IL-6 mRNA expression was observed in KO-HD compared with KO-ND (p < 0.01). These results indicated that Rhbdf2 genes may regulate high fat diet-induced obesity damage by anti-inflammatory and anti-oxidative roles in fat tissue of mice.
Red meats are important animal foods because of their nutritional aspects, but the over-consumption of red meat produces reactive oxygen species (ROS) caused by heme iron and induces colorectal cancer. The effect of orally administered hemin and calcium provided in drinking water for 6 weeks on colon carcinogenesis was observed in male ICR mice. After the mice were acclimated for 1 week, they received three subcutaneous azoxymethane (AOM, 10 mg/kg b.w.) injections weekly and were provided with 2% dextran sodium sulfate (DSS) via drinking water for the next week. The mice were divided into three groups: the control, hemin, and hemin + calcium groups. The orally administered daily dose of hemin was 2 g/kg b.w., and 0.05% calcium was provided daily via drinking water. Colonic mucosa samples were stained with methylene blue, and then, the numbers of aberrant crypt (AC) and aberrant crypt foci (ACF) were counted. Lipid peroxidation in feces was estimated by thiobarbituric acid-reactive substances (TBARS) assay. The total numbers of AC and ACF per colon in the hemin group were significantly higher than those in the control group. Calcium treatment significantly decreased the numbers of ACF and AC in the colon of mice. The TBARS value in the feces of the hemin + calcium group was significantly lower than that in the feces of the hemin group. These results showed that hemin enhances the formation of pre-neoplastic lesions in the colon of mice and that calcium decreases the risk of colon carcinogenesis.
Colorectal cancer (CRC) is the third most prevalent cancer in the world, and heme iron is known to promote the CRC in an animal model. This study was conducted to investigate the effects of ascorbic acid in the presence of hemin on the formation of pre-neoplastic lesions induced by azoxymethane (AOM)/disodium sulfate (DSS) in mice. After acclimation for 1 week, five-week old mice received three s.c. injections (0-2 weeks of the experiment) of AOM [10 mg/kg body weight (BW)] weekly and were treated with 2% DSS in drinking water for the next week to induce aberrant crypt foci (ACF). All animals were fed the AIN-76A purified rodent diet for experimental period of 6 weeks. Experimental groups were then divided into three groups: carboxymethylcellulose (CMC) alone (control), CMC + Hemin, CMC + Hemin + ascorbic acid (AA). The CMC was used as a solvent for hemin. The daily doses were 534 mg/kg BW hemin and 246 mg/kg BW ascorbic acid administered orally. After the colonic mucosa were stained with methylene blue, aberrant crypt foci (ACF), aberrant crypt (AC) and polyps were counted. Lipid peroxidation in liver was evaluated by the thiobarbituric acid-reactive substances (TBARS) assay. The numbers of ACF, AC and large ACF (≥4 AC/ACF) per colon increased in the hemin group compared to the control group, while they decreased significantly in the hemin + ascorbic acid group compared to the control group or hemin group (p<0.01). The number of polyps/colon in the hemin + AA group was significantly decreased compared to the hemin group (p<0.05). In the liver, the TBARS value of the hemin group was significantly higher than that of the control group (p<0.01). Additionally, the TBARS value of the hemin + AA group decreased slightly compared to that of the hemin group. Taken together, these results suggest that hemin can promote colon carcinogenesis in a mouse model and that ascorbic acid has a protective effect against hemin-promoted colon carcinogenesis.
Excessive iron can promote the production of free radicals, thereby leading to harmful effects on cancer and aging. Ascorbic acid is not only an antioxidant but also a co-factor of iron absorption. The effect of iron-overload with ascorbic acid on experimental colon carcinogenesis was investigated in male ICR mice. Animals were treated weekly with azoxymethane (AOM, 10 mg/kg b.w.) at 0, 1, and 2 week and then drunk 2% dextran sodium sulfate (DSS)-containing water for the next 1 week. There were four experimental groups: carboxymethylcellulose (CMC) alone (control), CMC + ascorbic acid (AA), CMC + Fe, CMC + Fe + AA. The animals fed on AIN-76A purified rodent diet for six weeks. AA or Fe2O3 at the dose of 450 mg/kg b.w. were daily and orally treated for 6 weeks. The colonic mucosa was stained with methylene blue and then aberrant crypt foci (ACF) and polyps were counted. Thiobarbituric acid-reactive substances (TBARS) in serum and liver were determined. Iron concentration in liver was measured by inductively coupled plasma spectrophotometer. Fe-overload with AA strongly increased liver iron contents compared to control or Fe group (p<0.05). There were no significant differences in the number of ACF or polyps among all groups, although ironoverloaded groups had slightly higher numbers compared with the control or AA group. TBARS values in the liver were increased in the iron-overloaded groups compared to control and AA only group (p<0.05), but serum TBARS values were not changed. These results indicate that the excessive iron treatment did not affect the experimental colon carcinogenesis regardless of presence of AA in mice.
Colorectal cancer is one of the most common types of cancer in men and women who consume a Western diet. We investigated the inhibitory effect of selenium (sodium selenite, Na2SeO3) and selenium nanoparticles (nano-Se) on experimental colon carcinogenesis in ICR mice. After a 1-week acclimation, 6-week-old mice received three intraperitoneal (i.p.) injections (experimental week 0-2) of azoxymethane (AOM, 10 mg/kg body weight, b.w.), followed by 2% dextran sodium sulfate (DSS)-containing drinking water for the next 1 week. The three groups (10 mice/group) were orally administered either distilled water (control), selenium (1.7 ppm), or nano-Se (1.7 ppm) daily for 8 weeks. The numbers of aberrant crypt foci (ACF), aberrant crypt (AC), and tumorous lesions were measured in colonic mucosa. Se and nano-Se treatments significantly decreased the number of ACF, AC, and tumorous lesions compared with the control. However, there was no significant difference between the selenium and nano-Se groups. The glutathione peroxidase (GSH-Px) activity in the liver and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in serum, were high in the selenium and nano-Se groups, while thiobarbituric acid reactive substance (TBARS) level was low in both Se and nano-Se groups when compared with that in the control group. These findings indicate that selenium and nano-Se showed similar protective effects against colon carcinogenesis by inhibiting the development of ACF and tumorous lesions in mice.
Iron-overload can cause harmful effects such as cancer and aging via promoting the production of free radicals. The effect of orally administered nano-Fe overload with ascorbic acid on colon carcinogenesis was investigated in male ICR mice. After a 1-week acclimation, 5-week-old mice received three intraperitoneal injections (experimental week 0-2) of azoxymethane (AOM, 10 mg/kg body weight) weekly, followed by 2% dextran sodium sulfate (DSS) in drinking water for the next 1 week to induce aberrant crypt foci (ACF). Animals were divided into four groups; carboxymethylcellulose (CMC) alone (control), CMC + ascorbic acid (AA), CMC + nano-Fe (NFe), and CMC + NFe + AA groups. Animals were fed an AIN-76A purified rodent diet and daily administrated oral doses of 450 ppm each of nano-Fe and AA combination for 6 weeks. The colonic mucosa was stained with 0.5% methylene blue, and then the ACF and polyps were counted. Lipid peroxidation in the serum and liver was evaluated using the thiobarbituric acid-reactive substances (TBARS) assay. Iron concentration in the liver was measured using Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). Iron concentration in the liver of the NFe-overloaded groups was higher than that of the control (p<0.05). AA treatment increased the iron concentration in the liver. The number of ACF was not significantly different among all the groups. The number of polyps in all the NFe-treated groups was slightly higher than that in the control group and AA only-treated group. The serum TBARS was not significantly different among all the groups, but that in the liver was higher in all the NFe-treated groups than it was in the control group (p<0.05). These results indicate that the additional NFe treatment did not affect the experimental colon carcinogenesis in mice regardless of the presence of ascorbic acid.
This study was conducted to evaluate the accumulation and distribution of hydrophobically modified glycol chitosan (HGC) as a degradable nanoparticle in the body. To determine the movement of degradable HGC nanoparticles in the body, 20 mg/kg of lutetium177-labeled HGC (Lu177-HGC) with the size ranging from 320 to 400 nm was injected intravenously into ICR mice, and the amount of radioactivity remaining in blood and several organs was measured at various time points during the period of 5 days. In the pharmacokinetics analysis using the Lu177 radioisotope, the free Lu177 was mainly distributed and accumulated in the order of kidney>liver>lung at 1 day after the injection of the radioisotope. However, the Lu177-HGC showed a high distribution of nanoparticles in the order of liver>spleen>kidney during the experimental period of 5 days. These results would provide a basic pharmacokinetics for the use of HGC as a drug carrier in drug delivery system.
The ultimate goal of this study is to assess the accumulation and distribution of hydrophobically modified glycol chitosan (HGC) as a degradable nanoparticle in the body. To understand the movement of degradable nanoparticle HGC in the body, we intravenously injected a dose of 20 mg/kg of Cy5.5-labeled HGC with size ranging from 320 to 400 nm into ICR mice, and measured the amount of fluorescence remaining in blood and several organs at various time intervals. In blood, the level of Cy5.5-labeled HGC was the highest at 15 min, then after 30 min it decreased rapidly and reached a plateau form 30 min to 28 days. In the tissue we confirmed the presence of nanoparticles at high levels in the order of kidney>liver>submandibular gland until 28 days after injection. However, we did not find the presence of the particles in the brain or testes. These results will provide basic information on HGC as a drug delivery agent.