검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15,099

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explores the contemporary reinterpretation of traditional suit design through the lens of post-structuralist philosopher Jacques Derrida’s concept of decentralization. The objective is to systematically analyze the diverse expression methods of decentralized suits in contemporary fashion and identify their design characteristics, thus exploring various design possibilities for decentraliz suits. To achieve this, the study examines the deconstructivist fashion collections of notable designers such as Martin Margiela, Rei Kawakubo of Comme des Garçons, Alexander McQueen, and Thom Browne, analyzing 269 decentralized suits from their men’s collections from 2009 to the present. The methods of decentralization are categorized based on the structure (composition), details, and materials of the garments, are classified into deconstruction, discontinuity, and disorder. Specific expression methods include irregular wearing, layering, asymmetry, and distortion for deconstruction; omission, heterogeneous insertion, material transition, and separation for discontinuity; and tearing, graffiti, and unfinished elements for disorder. The identified design characteristics are as follows: gender-neutral and category-free, which dismantles the rigid formality and masculine image of suits to allow flexible and diverse gender expressions; integration of unconventional elements, which combines traditional suit design with non-traditional details like ruffles, strings, unfinished edges, and graffiti to create new designs; and sustainable design, which utilizes the deconstruction and recombination of existing suits to recycle discarded suits, making it suitable for upcycling.
        5,400원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        마비성 패류독소 중독증(paralytic shellfish poisoning; PSP)은 삭시톡신과 그 유사체로 오염된 패류를 섭취했을 때 발생하며, 저림, 구토 등의 증상에서부터 근육 마비와 심각한 경우 호흡 마비로 이어져 사망에 이를 수 있다. 독 성등가계수(toxic equivalency factors; TEFs)는 다양한 마 비성 패류독소의 독성을 표준화하여 위험성을 평가하는 데 사용된다. 마비성 패류독소를 검출하기 위해 사용되던 마우스 생체 실험(mouse bioassay; MBA)에 대한 윤리적 문제가 제기되면서 고성능액체크로마토그래피와 같은 기 기 분석법으로의 전환이 시도되고 있지만, 유사체들의 적절 한 TEF를 설정하기 위해서는 여전히 동물 모델을 통한 생 체 내 독성 데이터가 필수적이다. 본 연구에서는 동물 수를 줄이면서도 신뢰할 수 있는 경구투여 독성 결과를 얻기 위 해 삼단계 반응표면-경로 (three-level RSP) 설계를 사용했다. 인증 표준 물질을 이용하여 각 독소의 초기 용량과 조정 계 수를 결정하고 시험을 진행했으며, STX.2HCl, NeoSTX, dcSTX, GTX1&4, GTX2&3, dcGTX2&3의 반수치사량 (및 TEF) 값은 각각 451.3 (1.00), 306.5 (1.47), 860.9 (0.52), 644.5 (0.70), 915.3 (0.49), 2409.3 (0.19)로 나타났다. 도출된 TEF 값은 2016년 WHO에서 권고한 TEF 값뿐만아니라, 이 전에 보고된 경구 투여 반수치사량을 기반으로 한 TEF 값 과 강한 상관관계를 보였다. 본 연구는 마비성 패류독소 뿐 만 아니라 신규 미관리 해양생물독소에 대해 적절한 TEF를 설정하는 데 있어 삼단계 반응표면경로 설계를 윤리적 우 려와 신뢰할 수 있는 독성 데이터의 필요성 사이에서 효과 적으로 균형을 맞출 수 있는 방법으로 제안한다.
        4,000원
        3.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식품 포장 분야에서 바이오센서와 바이오폴리머 기반 나 노복합체, 즉 바이오나노복합체의 통합이 점차 산업 전문 가들에 의해 인식되고 있으며, 이는 식품의 품질과 안전 에 대한 우려가 증가함에 따라 주도되고 있습니다. 식품 포장에 내장된 바이오센서는 포장된 상품의 미생물에 의 한 변질을 지속적으로 모니터링함으로써 식품의 완전성을 유지하는 핵심 요소로 업계를 변화시킬 준비가 되어 있다. 동시에, 탁월한 기계적, 열적, 광학적, 항균적 특성으로 인 해 바이오폴리머 기반 나노복합체의 연구와 적용이 크게 확대되었다. 이러한 특성은 이들을 혁신적인 포장 솔루션 에 적합한 주요 재료로 만든다. 그러나 지능형 식품 포장 시스템 발전에 바이오센서와 바이오나노복합체를 사용하 는 잠재적인 장애물과 전망을 탐구하는 것은 아직 충분하 지 않다. 바이오나노복합체와 바이오센서의 융합을 제안 하는 것은 스마트 포장 산업을 재정의하는 획기적인 단계 로, 이 기술들을 더 깊이 이해하여 지속 가능하고 경제적 으로 실행 가능한 스마트 포장 옵션의 개발을 촉진할 필 요성을 강조한다. 이 리뷰는 바이오센서와 바이오나노복 합체에 대한 기존 연구와 개발 동향을 철저히 검토하고, 가까운 미래에 스마트 식품 포장 산업에서 진전을 이끌어 낼 앞으로의 도전과 기회를 강조하는 데 전념하고 있다.
        5,700원
        4.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen peroxide (H2O2) is widely used in bleaching treatments in the pulp and paper industry, in wastewater treatment, and as a food additive. However, H2O2 solutions are unstable and decompose slowly when subjected to external factors such as light, high temperatures, or metal compounds. Therefore, a simple and reliable method to measure the concentration of H2O2 is required for its proper use in various applications. We determined the concentration of an H2O2 solution by measurement at a single wavelength (249 nm) without any reagents or complex analytical procedures. In the present work, the measurable concentration of H2O2 was as low as 0.015 wt% (4.41 mM) and as high as 0.300 wt% (88.2 mM), with high linearity (99.99% at 249 nm) between the concentration of H2O2 and the optical density (OD) values. In addition, the method could be used to measure the concentration of H2O2 in a peracetic acid solution without interference from acetic acid and peracetate ion.
        4,000원
        5.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ainsliaea acerifolia leaves are registered with the Ministry of Food and Drug Safety as edible herbal materials in Korea, and research is underway to explore their potential in developing functional foods, cosmetics, and pharmaceuticals. In this study, we developed an analytical method using HPLC-DAD to quantify three key compounds—chlorogenic acid, isochlorogenic acid A, and 1,5-dicaffeoylquinic acid—in A. acerifolia leaves extract. This method has been optimized and validated for specificity, accuracy, precision, limit of quantification (LOQ), and linearity. The correlation coefficients (r²) for the calibration curves exceeded 0.9962. The limits of detection (LOD) and quantification (LOQ) were 0.3012 and 0.9128 μg/mL for chlorogenic acid, 0.1182 and 0.3582 μg/mL for isochlorogenic acid A, and 0.2342 and 0.7098 μg/mL for 1,5-dicaffeoylquinic acid, respectively. The net recovery rates for accuracy testing were 105.13% for chlorogenic acid, 105.37% for isochlorogenic acid A, and 100.37% for 1,5-dicaffeoylquinic acid. All parameters assessed with this newly developed method fell within the acceptable ranges specified by ICH guidelines. These findings demonstrate that the method is robust and reliable for accurately identifying and quantifying chlorogenic acid, isochlorogenic acid A, and 1,5-dicaffeoylquinic acid in both routine analysis and large-scale extraction process of A. acerifolia leaves.
        4,000원
        6.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The world is transitioning towards sustainable agriculture, which includes reducing chemical fertilizers and increasing the adoption of eco-friendly materials. Red clay, known for its colloidal properties, adsorption, and ion exchange capabilities, has become eco-friendly due to its non-toxic nature. However, when red clay is applied in its insoluble powdered form, its absorption by plants is limited. Processed red clay (PRC) was developed to overcome these limitations, and microbial formulations containing Lactobacillus fermentum (MFcL) were applied alongside it. Chlorophyll content and fluorescence values decreased over time after cucumber transplantation. However, co-application of PRC and MFcL resulted in higher chlorophyll content than PRC alone, suggesting that this combination could alleviate plant growth reduction caused by stress. Although the total yield of cucumbers was highest in the NF group, yield per plant increased by more than 10% in the PRC treatment compared to NF. Additionally, yield was higher when PRC was applied alongside MFcL than with MFcL alone. While the proportion of marketable fruits decreased over time in the NF treatment, it increased in the PRC treatment. Soil analysis revealed that PRC application increased soil pH by 3% and available silicon content by 7.6% compared to NF, while available phosphate levels decreased by 13%. Analysis of microbial density in the soil showed that bacteria levels significantly increased by 2-fold in PRC+MFcL compared to NF, while actinomycetes decreased by 1.5-fold. In conclusion, PRC treatment positively influenced cucumber growth, and co-application with microbial fertilizers demonstrated a synergistic effect.
        4,000원
        12.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu-Ti thin films were fabricated using a combinatorial sputtering system to realize highly sensitive surface acoustic wave (SAW) devices. The Cu-Ti sample library was grown with various chemical compositions and electrical resistivity, providing important information for selecting the most suitable materials for SAW devices. Considering that acoustic waves generated from piezoelectric materials are significantly affected by the resistivity and density of interdigital transducer (IDT) electrodes, three types of Cu-Ti thin films with different Cu contents were fabricated. The thickness of the Cu-Ti thin films used in the SAW-IDT electrode was fixed at 150 nm. As the Cu content of the Cu-Ti films was increased from 31.2 to 71.3 at%, the resistivity decreased from 10.5 to 5.8 × 10-5 ohm-cm, and the density increased from 5.5 to 7.3 g/cm3, respectively. A SAW device composed of Cu-Ti IDT electrodes resonated at exactly 143 MHz without frequency shifts, but the full width at half maximum (FWHM) values of the resonant frequency gradually increased as the Cu content increased. This means that although the increase in Cu content in the Cu-Ti thin film helps to improve the electrical properties of the IDT electrode, the increased density of the IDT electrode deteriorates the acoustic performance of SAW devices.
        4,000원
        13.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydrothermal and ultrasonic processes were used in this study to synthesize a single-atom Cu anchored on t-BaTiO3. The resulting material effectively employs vibration energy for the piezoelectric (PE) catalytic degradation of pollutants. The phase and microstructure of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and it was found that the sample had a tetragonal perovskite structure with uniform grain size. The nanomaterial achieved a considerable increase in tetracycline degradation rate (approximately 95 % within 7 h) when subjected to mechanical vibration. In contrast, pure BaTiO3 demonstrated a degradation rate of 56.7 %. A significant number of piezoinduced negative charge carriers, electrons, can leak out to the Cu-doped BaTiO3 interface due to Cu’s exceptional conductivity. As a result, a single-atom Cu catalyst can facilitate the separation of these electrons, resulting in synergistic catalysis. By demonstrating a viable approach for improving ultrasonic and PE materials this research highlights the benefits of combining ultrasonic technology and the PE effect.
        4,000원
        14.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Among the products of the electrocatalytic reduction of carbon dioxide (CO2RR), CO is currently the most valuable product for industrial applications. However, poor stability is a significant obstacle to CO2RR. Therefore, we synthesized a series of bimetallic organic framework materials containing different ratios of tungsten to copper using a hydrothermal method and used them as precursors. The precursors were then subjected to pyrolysis at 800 °C under argon gas, and the M-N bimetallic sites were formed after 2 h. Loose porous structures favorable for electrocatalytic reactions were finally obtained. The material could operate at lower reduction potentials than existing catalysts and obtained higher Faraday efficiencies than comparable catalysts. Of these, the current density of WCu-C/N (W:Cu = 3:1) could be stabilized at 7.9 mA ‧ cm-2 and the FE of CO reached 94 % at a hydrogen electrode potential of -0.6 V (V vs. RHE). The novel materials made with a two-step process helped to improve the stability and selectivity of the electrocatalytic reduction of CO2 to CO, which will help to promote the commercial application of this technology.
        4,500원
        15.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The concrete silo dry storage system, which has been in operation at the Wolsong NPP site since 1992, consists of a concrete structure, a steel liner plate in the inner space, and a fuel basket. The silo system’s concrete structure must maintain structural integrity as well as adequate radiation shielding performance against the high radioactivity of spent nuclear fuel stored inside the storage system. The concrete structure is directly exposed to the external climatic environment in the storage facility and can be expected to deteriorate over time owing to the heat of spent nuclear fuel, as well as particularly cracks in the concrete structure. These cracks may reduce the radiation shielding performance of the concrete structure, potentially exceeding the silo system’s allowable radiation dose rate limits. For specimens with the same composition and physical properties as silo’s concrete structures, cracks were forcibly generated and then irradiated to measure the change in radiation dose rate to examine the effect of cracks in concrete structures on radiation shielding performance, and in the current state, the silo system maintains radiation shielding performance.
        4,000원
        16.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Kori Unit 1, the first commercial nuclear power plant (NPP) in Korea, was permanently shut down in 2017 and was scheduled for decommissioning. Various programs must be planned early in the decommissioning process to safely decommission NPPs. Radiological characterization is a key program in decommissioning and should be a high priority. Radiological characterization involves determining the decommissioning technology to be applied to a nuclear facility by identifying the radiation sources and radioactive contaminants present within the facility and assessing the extent and nature of the radioactive contaminants to be removed from the facility. This study introduces the regulatory requirements, procedures, and implementation methods for radiological characterization and proposes a methodology to link the results of radiological characterizations for each stage. To link radiological characteristics, this study proposes to conduct radiological characterization in the decommissioning phase to verify the results of radiological characterization in the transitional phase of decommissioning NPPs. This enables significantly reducing the scope and content of radiological characterization that must be performed in the decommissioning phase and maintaining the connection with the previous phase.
        4,600원
        17.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In Korea, two types of spent nuclear fuels (SNFs) are generated, pressurized light water reactor type (PWR) and pressurized heavy water reactor type (PHWR; CANDU), that differ greatly in size, decay heat, and radioactive characteristics. Technology development for the disposal of SNFs has mainly focused on PWR SNFs that are large in size and have extremely high decay heat and radioactivity. However, CANDU SNFs should be considered differently from PWR SNFs in deep geological disposal systems because their characteristics significantly differ from those of PWR SNFs in terms of their dimensions, number of SNF bundles, and handling systems in nuclear power plant sites. In this paper, after reviewing the status of the CANDU SNF disposal concept by Canada and Korea, concepts related to the direct geological disposal of CANDU SNFs were described, and two concepts were proposed based on the results of the development. The engineered barrier systems developed using these two concepts were comparatively analyzed in terms of disposal safety, disposal efficiency, and technical maturity. Based on the results of the comparative analyses, a vertical-type emplacement disposal concept was determined as a reference concept for the deep geological disposal of CANDU SNFs.
        4,900원
        18.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The spent nuclear fuel, combusted and released in the nuclear power plant, is stored in the spent fuel pool (SFP) located in the fuel buildings interconnected with the reactors. In Korea, spent fuel has been stored exclusively in SFPs, prompting initiatives to expand storage capacity by either installing additional SFPs or replacing them with high-density spent fuel storage racks. The installation of these fuel racks necessitates obtaining a regulatory license contingent upon ensuring safe fuel handling and storage systems. Regulatory agencies mandate the formulation of various postulated accident scenarios and assessments covering criticality, shielding, thermal behavior, and structural integrity to ensure safe fuel handling and storage systems. This study describes an evaluation method for assessing the structural damage to storage racks resulting from fuel dropping as a part of the functional safety evaluation of these racks. A scenario was envisaged wherein fuel was dropped onto the base plates of the upper and lower sections of the storage racks, and the impact load was analyzed using the ABAQUS/Explicit program. The evaluation results revealed localized plastic deformation but affirmed the structural integrity and safety of the storage racks.
        4,000원
        19.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Se sorption onto Ca-type montmorillonite purified from Bentonil-WRK—a new research bentonite introduced by Korea Atomic Energy Research Institute—was examined under ambient conditions (pH 4−9, pe 7−9, I = 0.01 M CaCl2, and T = 25°C). Se(IV) was identified as the oxidation state responsible for weak sorption (Kd < 22 L∙kg−1) by forming surface complexes with edge functional groups of the montmorillonite. Thermodynamic modeling, considering reaction mechanisms of outer-sphere complexation (≡AlOH2 + + HSeO3 − ⇌ ≡AlOH3SeO3, log K = 0.50 ± 0.21), inner-sphere complexation (2≡AlOH + H2SeO3(aq) ⇌ (≡Al)2SeO3 + 2H2O(l), log K = 7.89 ± 0.51), and Ca2+-involved ternary complexation (≡AlOH + Ca2+ + SeO3 2− ⇌ ≡AlOHCaSeO3, log K = 7.69 ± 0.28) between selenite and aluminol sites of montmorillonite, acceptably reproduced the batch sorption data. Outer- and inner-sphere complexes are predominant Se(IV) forms sorbed in acidic (pH ≈ 4) and near-acidic (pH ≈ 6) regions, respectively, whereas ternary complexation accounts for Se(IV) sorption at neutral pHs under the ambient conditions. The experimental and modeling data generally extend a material-specific sorption database of Bentonil-WRK, which is essential for assessing its radionuclide retention performance as a buffer candidate of deep geological disposal system for high-level radioactive waste.
        4,300원
        20.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Technetium has been identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. In this study, the sorption of Tc(IV) onto MX-80 bentonite, illite, and shale in ionic strength (I) 0.1–6 mol·kgw−1 (m) Na-Ca-Cl solutions at pHm = 4–9 and limestone at pHm = 5–9 was studied. Tc(IV) sorption on MX-80 increased with pHm from 4 to 6, reached the maximum at pHm = 6–7, and then gradually decreased with pHm from 7 to 9. Tc(IV) sorption on illite gradually increased with pHm from 4 to 7, and then decreased as pHm increased. The sorption properties of Tc(IV) on shale were quite similar to those on illite. Tc(IV) sorption on limestone slightly increased with pHm from 5 to 6 and then seemed to be constant at pHm = 6–9. Tc(IV) sorption on all four solids was independent of ionic strength (0.1–6 m). The 2 site protolysis non-electrostatic surface complexation and cation exchange model successfully simulated the sorption of Tc(IV) onto MX-80 and illite and the optimized values of surface complexation constants were estimated.
        4,500원
        1 2 3 4 5