Spirodela polyrhiza (L.) has been known as greater duckweed or great duckmeat. It is native inhabited in Korea. It is considered as a rich source of primary metabolites including protein, carbohydrates, and fats. Thus, it is considered as an alternative food source for the future. In addition, it has a strong phytoremediation capacity to remove various environmental pollutants, especially inorganic elements and pesticides. With a variety of duckweed’s application, there is an urgent need to develop a cultivation method for a sustainable supply of S. polyrhiza. In this study, an indoor vertical farm has been introduced to optimize duckweed cultivation. Indoor cultivated S. polyrhiza showed about 2-fold higher fresh weight than outdoor cultivated duckweed. Contents of inorganic elements were also significantly reduced in indoor cultivated S. polyrhiza. Especially, lead (Pb), cadmium (Cd), and arsenic (As) were approximately 10-fold decreased in indoor cultivated duckweed. On the other hand, contents of proteins and fats were significantly increased in indoor cultivated S. polyrhiza, while carbohydrates were found more in outdoor cultivated S. polyrhiza. Increasing N content in a homemade nutrition solution also enhanced fresh and dried weights of S. polyrhiza by about 1.8-fold in comparison with other commercial nutrition solutions. Proliferation rate (%) was doubled every 24 hours in this indoor vertical farm, indicating the accomplishment of a sustainable supply for S. polyrhiza. Further studies need to be undertaken to cultivate other duckweeds such as Wolffia arrhiza and Lemna minor using the same indoor farming system.
Stemflow (SF) is essential for water resources within forest ecosystems and can constitute up to half of the gross rainfall (GR), depending on the forest stand structures in coniferous plantations. Although numerous studies on SF yield have been reported globally for various forest types, very few studies on SF have been reported to examine the influence of forest stand structures on SF in Korea. This study aimed to quantify the relationship between SF and forest stand structures in unmanaged Japanese cypress plantations. Two study plots were established (10 m × 10 m each) in plantations with the same stem density (SD: 2500 stems ha-1) (hereafter P1 and P2). Almost all forest stand structures (canopy projection area, tree height, diameter at breast height (DBH), number of live and dead branches, and ratio of canopy length to canopy width), including canopy volume using mobile LiDAR devices, were investigated. To evaluate the efficiency of funneling rainwater for the effect of tree biomass on SF, a funneling ratio (FR) was used. The present SF ratios (20.7% in P1 and 22.3% in P2) were much higher than those reported in previous studies of various forest types in Korea (SF ratios: 0.2–5.8% with a mean of 2.0%). This is due to the interaction between the high SD and many under-canopy dead branches. Individual-scale FR was correlated with DBH (R2 = 0.43). The present stand-scale FRs (FRstand) (22.3 in P1 and 29.2 in P2) were much higher than those reported in the previous studies (FRstand: 1.0–33.3 with a mean of 7.8) because of the negative relationship between FRstand and mean DBH (R2 = 0.78, p = 0.02). Our results provide useful information for understanding changes in SF caused by forest stand structures.
Background: With the growing interest in the health of companion dogs, their average lifespan has increased, leading to an increase in the proportion of elderly dogs. As elderly dogs are vulnerable to various diseases, there is a need for alternatives to predict the risk of major diseases in senior dogs, prevent them in advance, and manage their health effectively. Therefore, this study was conducted to identify candidate genes and single nucleotide polymorphisms (SNPs) influencing primary angle-closure glaucoma, a major disease in elderly dogs, using the Axiom Canine HD Array and establishing foundational data. Methods: Samples from 95 dogs of 26 breeds from South Korea were analyzed using an SNP chip. Ultimately, two SNPs were selected. To assess the impact of non-synonymous SNP (nsSNPs), functional analysis of candidate genes, Hazard Assessment, and protein structure prediction were conducted. Sequencing for SNP validation involved samples from 95 dogs of ten breeds with reported domestic and international glaucoma cases. Results: The candidate gene TNS1 was associated with the integrin signaling pathway. The selected nsSNP was found to cause a mutation at the ninth position of the amino acid sequence, changing serine to leucine and resulting in alterations to the overall protein structure. Sequencing analysis results for SNP validation revealed differences in frequency among breeds. Conclusions: The identified SNP markers are potential risk prediction tools. Utilizing genotype frequency data by breed and individual could aid in disease management and contribute to advancements in the medical industry.
국립원예특작과학원에서는 밝은 화색과 안정적인 화형의 생 육이 우수한 빨간색 스탠다드 장미 품종을 육성하기 위해 진한 적색 스탠다드 장미 품종 ‘엔드리스러브(Endless Love)’를 모 본으로, 꽃잎수가 많고 안정적으로 가시가 적은 밝은 노란색 ‘페니레인(Penny Lane)’ 품종을 부본으로 인공교배하였다. 37 개의 교배실생을 양성해 1, 2, 3차에 걸친 특성검정 및 현장실증 을 통해 꽃이 크고 화형이 안정적이며, 재배안정성 및 생산성, 절화특성이 우수한 ‘원교 D1-390’을 최종 선발하였다. 2023년 ‘루비레드(Ruby Red)’로 명명하여 국립종자원에 품종보호출원·등록되었다. ‘루비레드’ 품종은 밝은 적색(R53C)을 가졌으 며, 꽃잎수가 32.8매, 화폭과 화고는 각각 10.9, 5.9cm로 대조 품종보다 크다. 절화장은 평균 71.7cm, 절화수명은 약 16.7일, 수량은 연간 168대/m2로 대조품종인 ‘레드스퀘어(Red Square)’ 대비 절화장이 길고 절화수명도 2배 이상 길며, 수확량도 1.4배 우수하다. 2023년 국내 육성 장미 품종 서울식물원 관람객 대상 공동평가회에서 스탠다드 장미 중 우수한 평가를 받았으며, 현 장 실증 결과 농가별로 균일하고 우수한 수량과 절화품질을 보 였다. 절화용 장미 ‘루비레드’ 품종은 밝은 적색과 우수한 화형 을 가지는 품종으로 해외 대체 품종으로 국내에서 많이 재배될 것으로 기대된다.
Background: Aflatoxin B1 (AFB1) is a toxic metabolite generated by Aspergillus species and is commonly detected during the processing and storage of food; it is considered a group I carcinogen. The hepatotoxic effects, diseases, and mechanisms induced by AFB1 owing to chronic or acute exposure are well documented; however, there is a lack of research on its effects on the intestine, which is a crucial organ in the digestive process. Dogs are often susceptible to chronic AFB1 exposure owing to lack of variation in their diet, unlike humans, thereby rendering them prone to its effects. Therefore, we investigated the effects of AFB1 on canine small intestinal epithelial primary cells (CSIc). Methods: We treated CSIc with various concentrations of AFB1 (0, 1.25, 2.5, 5, 10, 20, 40, and 80 μM) for 24 h and analyzed cell viability and transepithelial-transendothelial electrical resistance (TEER) value. Additionally, we analyzed the mRNA expression of tight junction-related genes (OCLN, CLDN3, TJP1, and MUC2), antioxidant-related genes (CAT and GPX1), and apoptosis-related genes (BCL2, Bax, and TP53). Results: We found a significant decrease in CSIc viability and TEER values after treatment with AFB1 at concentrations of 20 μM or higher. Quantitative polymerase chain reaction analysis indicated a downregulation of OCLN, CLDN3, and TJP1 in CSIc treated with 20 μM or higher concentrations of AFB1. Additionally, AFB1 treatment downregulated CAT , GPX1, and BCL2. Conclusions: Acute exposure of CSIc to AFB1 induces toxicity, and exposure to AFB1 above a certain threshold compromises the barrier integrity of CSIc.
Salinity stress is a major threat to plant growth and development, affecting crop yield and quality. This study investigated the effects of different salinity levels on photosynthetic responses and bulb growth of Lilium LA hybrid “‘Serrada’.” Plants were irrigated with 1 L of 0, 200, and 400 mM NaCl solutions every two weeks for 14 weeks in a greenhouse. At the end of the cultivation period, the substrate pH decreased, and electrical conductivity increased with increasing salinity. Regardless of salinity levels, the days to flowering and number of flowers were similar among treatments. In contrast, the flower width, plant height, number of leaves, and leaf area decreased with increasing NaCl concentrations. Although there were no differences in the photosystem II (PSII) operating efficiency and maximum quantum yield of PSII, net CO2 assimilation rates (An) and stomatal conductance (gs) were significantly reduced at 200 and 400 mM NaCl solutions compared to the control. At 400 mM NaCl solution, bulb diameter and weight significantly decreased at the end of the experiment. These results suggest that bulb growth inhibition could be attributed to limiting photosynthetic rate and stem growth. This finding suggests that salinity mitigation is necessary to maintain plant growth and photosynthetic capacity in lily cultivation on salt-affected soils.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
마늘은 백합과 알리움속에 속하는 작물로 약용, 양념채소로 많이 소비되어져 왔다. 마늘은 6월에 수확하여 1개월 간의 건조과정을 거치게 되는데 보통 장마기와 겹치게 되어 연평균 부패율은 5%이상으로 높다. 마늘의 저장중 병해충은 뿌리응애, 마늘혹응애, 마른썩음병 등으로 섭식에 따른 부패를 유발하며, 건조시기를 단축하고 효율적인 건조를 통하여 감모율을 줄이는 것이 중요하다. 마늘의 병해충 피해를 줄이기 위해 개발한 열풍 흡기식 건조장치를 포함하여 관행, 열풍 건조기, 흡기식 건조 등 4가지 방법으로 마늘을 건조하였으며, 방법별 건조소요 일수, 부패율 등을 조사하였다. 연구결과 열풍-흡기식 건조장치의 순환 공기의 온습도는 외기대비 7.8℃ 높았고, 28.6% 낮았으며, 건조 소요일수는 관행건조 대비 31% 수준으로 우수하였다. 또한 병해충 피해 양상은 관행 건조 대비 4.4%p낮아 건조 기간 및 정상품율이 관행 대비 우수하여, 관행 건조를 대체 가능할 것으로 생각된다.