This study investigated the flowering response of three Korean native Aster species, namely A. hayatae, A. spathulifolius, and A. koraiensis, to varying photoperiods. Three-month-old plants propagated from cuttings were grown under four different photoperiods: 9, 12, 14, and 16 h. Aster hayatae flowered under all conditions, with flowering rates of 92%, 85%, 65%, and 27% under 9-, 12-, 14-, and 16-h photoperiods, respectively. Flowering in A. hayatae was promoted by shorter photoperiods, classifying it as a facultative short-day plant. Aster spathulifolius flowered only under 9- and 12-h photoperiods, with no significant difference between these treatments, suggesting that the species is an obligate short-day plant. However, given the low A. spathulifolius flowering rates of 27% and 13% under 9- and 12-h photoperiods, respectively, further research is required. Aster koraiensis did not flower under any photoperiod, possibly due to vernalization requirements or juvenility. These findings offer valuable insights into the photoperiodic flowering responses of these three Korean native Aster species, enhancing our understanding of their ecological traits and potential horticultural applications.
This study evaluated the effects of solid and water-soluble extracts derived from torrefied Pinus densiflora on lettuce (Lactuca sativa) germination and growth, as well as the cultivation efficiency of torrefied materials combined with plant nutrient solutions. Torrefied samples were prepared under various conditions (200°C, 220°C, 240°C for 20–80 minutes) and mixed with sand at ratios from 20% to 100%. Liquid extracts were formulated with macronutrients (N, P, K, Mg) and micronutrients (Mn, B, Fe, Cu) and applied to leafy and root vegetables. Germination tests showed that 60% and 80% torrefied treatments had the highest and most consistent rates, with torrefied samples promoting more rapid and stable germination than controls. A two-way ANOVA indicated a significant interaction between treatment and concentration (p = 0.043), suggesting concentration-specific effects. While shoot length showed no significant difference, root growth was marginally significant (p = 0.064), with washed torrefied material producing the longest roots. Physical analysis revealed that torrefied materials improved soil thermal retention and moisture-holding capacity. However, increasing torrefied content reduced porosity, likely due to fine particles filling soil pores. In conclusion, torrefied P. densiflora materials exhibit strong potential to enhance germination, root development, and soil condition. Optimal results were achieved with 40–60% solid mixtures for germination and 60–80% diluted extracts for rapid and consistent seedling growth. When optimally applied, they may serve as effective, sustainable amendments in cultivation systems.
This study investigates the factors influencing the seed longevity of Quercus myrsinifolia, a species with recalcitrant seeds highly sensitive to desiccation and freezing. The effects of moisture content, seed collection date, and storage methods on seed viability were analyzed using exponential decay modeling. Interactions between these factors were also explored to refine conservation strategies. Seeds with moisture content above 40% demonstrated a predicted seed longevity of 2.19 years, whereas those with moisture content below 30% had seed longevity of less than 1 year. Late-season seeds collected in November and December exhibited superior germination percentages and longer predicted seed longevity (1.32 years) compared to early-season seeds collected in September and October (<1 year). In seed weight, large seeds (2.0 g) showed longer predicted seed longevity about 1.5 times greater than that of small seeds (<1.2g). Storage methods significantly affected seed longevity, with refrigerator (4°C) with silica gel maintaining viability for 2–3 years, while seeds stored at room temperature (25°C) exhibited a seed longevity of less than 1 year. Silica gel was found to prevent seed deterioration due to over-desiccation, emphasizing the importance of balanced moisture regulation. Q. myrsinifolia seeds exhibited 𝑏 values ranging from 0.30 to 2.04, demonstrating a close relationship between decay constant, moisture content, storage conditions, and seed longevity. These findings provide critical insights into optimizing seed storage and propagation strategies for Q. myrsinifolia, contributing to its conservation and ecological restoration efforts.
This study investigated the morphological characteristics and regional variations of leaves, flowers, and seeds of Quercus myrsinifolia Blume to understand its ecological adaptation and the effects of environmental factors. Samples were collected from Jinju, Hapcheon, and Sancheong, and nine leaf traits, six flower traits, and five seed traits were analyzed. Significant regional variations were observed, with Hapcheon exhibiting the largest leaf and flower sizes, while Sancheong showed the largest and heaviest seeds. Jinju recorded the smallest values for most traits. Principal Component Analysis (PCA) revealed distinct regional groupings, with Hapcheon displaying intermediate traits, Sancheong larger traits, and Jinju smaller traits. Correlation analysis identified strong positive relationships between leaf length and width, seed length and weight, and the number of staminate flowers and catkin width, highlighting key indicators for growth. Climate factors such as temperature and precipitation significantly influenced morphological traits, with higher temperatures negatively affecting leaf and seed sizes, while precipitation showed a weak positive correlation with seed weight. Among soil factors, pH and magnesium content were closely related to morphological traits. pH exhibited a negative correlation with leaf length and petiole length, while magnesium showed a positive correlation with seed weight and leaf width. These findings underscore the significant role of environmental factors in morphological variation and provide valuable insights for developing regionally adaptive breeding strategies. These findings provide foundational data for developing region-specific breeding strategies and cultivars for Q. myrsinifolia, contributing to ecological management and climate change adaptation strategies.
Helicobacter pylori are known as a causative agent of gastritis, gastric duodenum and peptic ulcer, and gastric cancer, and multiple drug use is associated with various side effects in patients. The discovery of antibacterial substances against H. pylori from Korean resource plants is an important substitute for antibiotics. 52 species of Korean resource plants were collected and extracted with 50% ethanol, and antibacterial activity against H. pylori was measured using the disk diffusion method. The toxicity of plant extracts to human gastric adenocarcinoma(AGS) cells was measured by MTT assay, and the level of IL-8 secreted when gastric epithelial cells were inoculated with H. pylori was measured. As a result of measuring the antibacterial activity of H. pylori, antibacterial activity was confirmed in 38 plant extracts. The plant species with the strongest antibacterial activity were Chrysanthemum indicum, Rheum rhabarbarum, Patrinia scabiosaefolia and Petasites japonicus. C. indicum was not cytotoxic to H. pyroli-infected AGS cells and showed anti-inflammatory effects. This study's results can be used to develop healthy, functional foods and medical materials.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
The chemical composition of 86 species of native plants in Korea, including plants to be afforestation, was analyzed. The chemical composition of the species analyzed was different. The species with the highest extractable content was Viburnum dilatatum (3.91%), and the species with the lowest extractable content was Ligustrum lucidum (0.11%). The lignin content ranged from 12 to 39%, with an average of 25%. The species with the highest lignin content was Chaenomeles lagenaria (39.37%). Hemicellulose content ranged from 18 to 52%, with the highest species being Thuja occidentalis (51.22%) and Eucommia ulmoides (48.84%). Cellulose content ranged from 25 to 58%, and the species with the highest content were Prunus serrulata (57.67%), Diospyros kaki (57.14%), Aesculus turbinata (53.29%), Albizia julibrissin (53.02%), and Zelkova serrata (52.29%). The chemical composition was different for each use taxon of 86 plant species. The lignin content was the highest in the fruit group and the lowest in the group other than recommended species for afforestation. Cellulose content was highest in non-reforestation-recommended tree species and lowest in fruit trees. In classification according to tree height, lignin content was higher in shrubs than in tall trees, and cellulose content was highest in tall trees. Between deciduous and evergreen trees, the lignin content was high in deciduous trees (26.46%), and the cellulose content was also high in deciduous trees (44.01%). As a result of analyzing the correlation between each compound, there was a difference. There tended to be a positive correlation between extractives and lignin content. There was a negative correlation between extractives and holocellulose content, hemicellulose and cellulose. The higher extract content affected the cellulose content much more than hemicellulose. Also, the higher the lignin content, the lower the cellulose content. The species with low lignin content and high cellulose content were Diospyros kaki and Prunus serrulata var. spontanea. This result is expected to be primary data for bioenergy, pulp industry and bioindustry.
경상남도농업기술원 화훼연구소에서 2021년 화색이 연황 색이며 화심이 녹색인 미니 절화용 거베라 품종 ‘크림쿠키’ (Cream Cookie)를 육성하였다. ‘크림쿠키’ 품종은 2014년 황색 미니 ‘Sun City’를 모본으로, 백색 미니 ‘Blandy’를 부 본으로 인공교배를 실시하여 육성된 품종이다. 2021년까지 생육 및 개화 특성검정과 기호도 조사를 실시하였으며 ‘크림 쿠키’의 생육 및 개화특성을 대조품종인 ‘Sun City’와 비교하 였다. ‘크림쿠키’는 연황색(RHS 4C) 꽃잎과 녹색 화심을 가진 반겹꽃 거베라 품종이다. 화폭이 7.1cm인 작은 꽃이며, 화경 장은 58.9cm였다. 화경 직경은 상부 0.4cm, 하부 0.7cm 였 다. 외부설상화의 길이는 2.8cm이며 폭은 0.8cm였다. 개화 소요일수는 65.7일로 ‘Sun City’에 비하여 18.8일 빨랐으며, 첫 개화시 엽수는 22.4매였다. 연간 주당 절화수량은 102.3 본으로 ‘Sun City’의 82.0본에 비하여 20.3본이 많았다. 절 화수명은 17.8일로 ‘Sun City’보다 4.1일 더 길었다. ‘크림쿠 키’는 화폭이 7.1cm의 미니 품종으로 연간 주당 100본 이상 절화 생산이 가능하다. 또한 수확 후 꽃 캡 씌우기, 꽃목 보강 등 추가적인 작업을 생략할 수 있어 생산비 절감이 가능하므 로 농가보급 확대가 기대된다.
기존에는 생산되는 키틴과 키토산의 대부분이 게, 새우등 갑각류 껍질에서 유래하였다. 하지만 어업에 의존하 는 기존 갑각류 비해 친환경적이며 품질 유지에 이점을 가지는 곤충으로부터 유래한 키틴이 최근 주목 받기 시작 하며 연구가 활발해지고 있다. 이에 키토산이 남조류의 응집을 통해 녹조 제거 효과를 가지며 기존에 녹조를 억제하기 위해 널리 사용되던 살조제들이 독성을 띠어 환경에 악영향을 미치는 문제를 해결할 수 있다는 연구를 참고하여 매미 탈피각으로부터 추출한 키토산을 녹조 방제에 활용해 보고자 하였다. 매미 탈피각으로부터 키토 산을 추출하고 대표적인 녹조 원인종인 Microcystis aeruginosa 배양 후 추출한 키토산을 처리하여 녹조의 응집 효과를 관찰하였다. 본 연구에서 새로운 키토산 추출 원으로서 매미 탈피각의 가능성을 제시하였으며 이를 녹조 방제에 활용함으로써 버려지는 자원인 매미 탈피각의 활용 방안을 제시하였다.
Although probiotics have been shown to improve health when consumed, recent studies have reported that they can cause unwanted side effects due to bacterial-human interactions. Therefore, the importance of prebiotics that can form beneficial microbiome in the gut has been emphasized. This study isolated and identified bacteria capable of producing biopoymer as a candidate prebiotic from traditional fermented foods. The isolated and identified strain was named WCYSK01 (Wissella sp. strain YSK01). The composition of the medium for culturing this strain was prepared by dissolving 3 g K2HPO4, 0.2 g MgSO4, 0.05 g CaCl2, 0.1 g NaCl in 1 L of distilled water. The LMBP(low molecular weight biopoymers) produced when fermentation was performed with sucrose and maltose as substrates were mainly consisted of DP3 (degree of polymer; isomaltotriose), DP4 (isomaltotetraose), DP5 (isomaltopentaose), and DP6 (isomaltoheptaose). The optimization of LMBP (low molecular weight of biopolymer) production was performed using the response surface methodology. The fermentation process temperature range of 18 to 32oC, the fermentation medium pH in the range of 5.1 to 7.9. The yield of LMBP production by the strain was found to be significantly affected by q fermentation temperature and pH. The optimal fermentation conditions were found at the normal point, and the production yield was more than 75% at pH 7.5 and temperature of 23oC.