검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 313

        23.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        24.
        2022.10 구독 인증기관·개인회원 무료
        Colloid migration is an important topic in post-closure safety assessment of radioactive waste repository as radionuclide can be adsorbed onto colloidal particles and migrated along with the colloids. This would reduce retardation of radionuclide migration, thus increasing the released concentration into biosphere. Recently, glass fiber waste has been found to contain small sized crushed glass fiber particles (GFPs), and concerns regarding the colloidal impact of GFP is being discussed. In this study, relevance of assessing GFPs facilitated radionuclide transport in the disposal environment of 1st phase disposal facility. Colloidal impact assessment can be divided into two sections, colloid mobility, and colloid sorption assessments. Considering GFP being denser than water, fluid velocity of 1st phase disposal facility is too slow to initiate movement of such dense particles. GFPs would remain settled, and no colloidal impact is expected. In this study, sorption assessment mainly focused to analyze the possible impact if migration of GFP does occur. The GFP is mainly composed of SiO2 and few other metal oxides. Due to high composition of SiO2 in the GFPs, negative surface charge is induced onto the surface of the GFPs in alkaline environment. This negatively charged surface can attract free positive ions (ex. Ni, Co, Fe, etc.) in the repository, and these ions would be adsorbed onto the surface of the GFPs via coulomb force. Thus, if GFPs migrate, colloid facilitated radionuclide transport can be expected. However, before being released into the biosphere, particles must pass through the engineered and natural barriers, where ion-colloid-rock interactions could result in transfer of radionuclide from one media to another. At Naka Research Center, Japan, ion-colloid-rock interactions are experimented with bentonite colloid, and the result showed that despite colloid’s sorption ability was 10 times higher than the barrier material, the overall released radionuclide concentration has negligible change. To reflect such phenomenon, coulomb attractive force of GFPs and concrete is calculated and compared, which the result showed that glass fiber was 10 times weaker than concrete. Considering the Japan’s experimental result, glass fiber facilitated transport would not enhance the radionuclide release into the biosphere. Nonetheless, assuming GFPs being mobile in 1st phase disposal facility, GFPs’ sorption ability is found to be negligible compared to the concrete of the repository, thus radionuclide transport is not expected to be enhanced. In future, this study could be used as basis for further colloidal impact analysis for the safety assessment of the repository.
        27.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural environmental resources are considered a prospective source of microorganisms capable of producing biocatalysts with great potential in industrial areas. Arable soil fertilized with peat moss is a habitat for various microorganisms. The present research focused on the isolation and identification of hydrolase-producing bacteria that thrive at a broad temperature range. In this study, a total of 33 strains were isolated from arable soil fertilized with peat moss (Silla Garden in Busan, South Korea). The isolated bacteria were mesophiles and thermophiles with a wide temperature range. Taxonomic identification showed that the isolated strains belonged to 2 phyla, 5 families, 10 genera, and 24 species. Subsequently, the isolated strains were screened for hydrolase (amylase, lipase, and protease) activity. All isolates possessed activity of at least one enzyme and six bacterial isolates produced combined extracellular enzymes. Diversity of soil bacteria species in the present study suggest the potential of soil bacteria in the various industrial applications.
        4,000원
        28.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Thus, evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, safety assessments conducted in Sweden and UK are studied, and the factors required to be considered for appropriate safety assessment of cellulose is analyzed. SKB (Sweden) conducted safety assessment of cellulose degradation as a part of long-term safety assessment of SFR. SKB determined that ISA would impact sorption of trivalent and tetravalent radionuclides (Eu, Am, Th, Np, Pa, Pu, U, Tc, Zr and Nb) at concentration higher than 10−4–10−3 M, and impact sorption of divalent radionuclides (Ni, Co, Fe, Be and Pb) at concentration higher than 10−2 M. Then, SKB conservatively set the upper limit of ISA concentration to be 10−4 M and conducted cellulose degradation evaluation on each waste package type, considering the expected disposal environment of SFR. Based on the calculated results, some of the waste packages showed concentration of ISA to be higher than 10−4 M, so SKB conservatively developed waste acceptance criteria to prevent ISA being produced to an extent of affecting the safety of the repository. SKB conducted safety assessment only for the repositories with pH above 12.5 and excluded 1BLA from the safety assessment as the expected pH of 1BLA is around 12, which is insufficient for cellulose to degrade. However, SKB set disposal limit for 1BLA as well, to minimize potential impact in future. Serco (UK) conducted safety assessment of cellulose degradation for the conceptual repository, which is a concrete vault with cementitious backfill. Serco estimated that the pH of repository would maintain around 12.4. Serco conservatively assumed that the pH would be sufficient for cellulose degradation to occur partially, and suggested application of appropriate degradation ratio for safety assessment of cellulose degradation. To conduct appropriate safety assessment of cellulose degradation, an appropriate ISA concentration limit based on radionuclide inventory list, and an appropriate cellulose degradation ratio based on the pH of disposal environment should be determined. As for guidance, below pH 12.5, cellulose degradation is not expected, and between pH 12.5–13, partial cellulose degradation is expected. In future, this study could be used as fundamental data to evaluate safety of the repository.
        29.
        2022.05 구독 인증기관·개인회원 무료
        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.
        30.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, the maximum safe disposal amount cellulose is evaluated considering the disposal environment of silos of 1st phase disposal facility. The key factor governing the impact of cellulose degradation is pH of disposal environment, as cellulose is known to degrade partially at pH above 12.5, and completely at pH above 13. Thus, disposal environment should be analyzed as to determine the extent of degradation. As silos are constructed with large amount of cement, porewater within concrete walls would be of very high pH. However, for high pH porewater to be released into the pores of crushed rock, which is filling up the silos, lower pH groundwater (commonly pH 7) should flow into the silos through the concrete walls. This causes dilution of the high pH concrete porewater, resulting in a lower pH as the silos are filled, reaching to expected pH of 11.8–12.3, which is below cellulose degradation condition. Thus, cellulose degradation is not expected, but to quantitatively evaluate safe disposal amount of cellulose, partial degradation is assumed. Upon literature review, the most conservative ISA concentration, enhancing radionuclide mobility, is determined to be 1.0×10−4 M and to reach this concentration, cellulose mass equivalent to 6wt% of cement of the repository, is required to be degraded. However, this ratio is derived based on complete degradation of cellulose into ISA, so for partial degradation, degradation ratio and yield ratio of ISA should be considered. Commonly, cellulosic material (e.g. cotton, paper, etc.) has degree of polymerization (DP) between 1,000–2,000, and with this DP, degradation ratio is estimated to be about 10%. Furthermore, yield ratio of ISA is known to be 80%. Considering all these aspects, about 1.79×107 kg of cellulose could be disposed, which if converted into number of drums, considering cellulose content of dry active waste, more than 100,000 drums (200 L) could be disposed with negligible impact on safety. Based on the result, negligible impact of cellulose degradation is expected for safety of 1st phase disposal facility. In future, this study could be used as fundamental data for revising waste acceptance criteria.
        31.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Non-destructive estimation of leaf area is a more efficient and convenient method than leaf excision. Thus, several models predicting leaf area have been developed for various horticultural crops. However, there are limited studies on estimating the leaf area of strawberry plants. In this study, we predicted the leaf areas via nonlinear regression analysis using the leaf lengths and widths of three-compound leaves in five domestic strawberry cultivars (‘Arihyang’, ‘Jukhyang’, ‘Keumsil’, ‘Maehyang’, and ‘Seollhyang’). The coefficient of determination (R2) between the actual and estimated leaf areas varied from 0.923 to 0.973. The R2 value varied for each cultivar; thus, leaf area estimation models must be developed for each cultivar. The leaf areas of the three cultivars ‘Jukhyang’, ‘Seolhyang’, and ‘Maehyang’ could be non-destructively predicted using the model developed in this study, as they had R2 values over 0.96. The cultivars ‘Arihyang’ and ‘Geumsil’ had slightly low R2 values, 0.938 and 0.923, respectively. The leaf area estimation model for each cultivar was coded in Python and is provided in this manuscript. The estimation models developed in this study could be used extensively in other strawberry-related studies.
        4,000원
        34.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
        4,000원
        35.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프리지아 ‘Sunny Gold’는 농촌진흥청 국립원예특작과학원 에서 2010년 노랑색 반겹꽃 프리지아 육성계통 ‘036010’을 모본으로 진노란색 홑꽃 ‘Golden Flame’을 부본으로 교배하여 획득한 종자로부터 2011년 진노란색 겹꽃의 향기가 강한 프리지아 계통을 선발하여 품종화 하였다. 2011년부터 2016년까지 개화 생육특성검을 수행하였으며 핵심수요자의 기호도 평가를 통해 선발되어 2017년 ‘Sunny Gold’ 로 명명되었다. ‘Sunny Gold’는 RHS color chart YO17B의 노란색 겹꽃 프리지아 품종으로 화폭은 6.7cm로 대조품종 ‘Golden Flame’ 6.1cm에 비해 크고, 분지수는 6.5로 다수확성 품종이다. 초장이 101.9cm로 초세가 강하다. ‘Sunny Gold’의 소화수 및 소화장은 각각 13.0개, 9.3cm이며 개화소요일수는 137.7일이다. 이 품종의 절화수명은 약 9일이며 자구번식력은 5.3배로 대조 품종 ‘Golden Flame’ 4.3배에 비해 우수하다. 전자코를 이용한 PCA분석결과 PC1과 PC2는 각각 99.3%와 0.6%로 전체 변이량의 99.9%를 반영하고 있다. Rader plot 분석결과 총 6개 센서에서 모두 ‘Sunny Gold’의 센서값이 향기가 강한 상용품종 ‘Yvonne’의 값에 비해 높게 나타나 ‘Sunny Gold’의 향기가 더 강한 것으로 나타났다.
        4,000원
        1 2 3 4 5