Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g− 1 at 5 A g− 1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.
Efforts have been extensively undertaken to tackle overheating problems in advanced electronic devices characterized by high performance and integration levels. Thermal interface materials (TIMs) play a crucial role in connecting heat sources to heat sinks, facilitating efficient heat dissipation and thermal management. On the other hand, increasing the content of TIMs for high thermal conductivity often poses challenges such as poor dispersion and undesired heat flow pathways. This study aims to enhance the through-plane heat dissipation via the magnetic alignment of a hybrid filler system consisting of exfoliated graphite (EG) and boron nitride (BN). The EG acts as a distributed scaffold in the polymer matrix, while the BN component of the hybrid offers high thermal conductivity. Moreover, the magnetic alignment technique promotes unidirectional heat transfer pathways. The hybrid exhibited an impressive thermal conductivity of 1.44 W m− 1 K− 1 at filler contents of 30 wt. %, offering improved thermal management for advanced electronic devices.
In insects, the glutathione S-transferase is initiated in both the detoxification process and the protection of cellular membranes against oxidative damage. In this study, we identified the open reading frame (ORF) sequence of GST-iso1 and 2 from Tenebrio molitor (TmGST-iso1 and 2). To investigate the expression patterrns of TmGST-iso1 and 2 in response to herbicide, 0.06, 0.6, and 6 ㎍/㎕ of butachlor (FarmHannong, Seoul, South Korea) was challenged into T. molitor larvae, resulting that the TmGST-iso1 were highly induced at 3 and 24 h-post injection. Whereas, the highest expression of TmGST-iso2 was detected at 24 h after treatment. This study may contribute to basic information about the detoxifying activities of T. molitor.
It is well known that the JNK pathway regulates AMP production against pathogenic infection in both vertebrates and invertebrates. Tenebrio molitor hep (Tmhep) is an homolog of MAP kinase kinase in mammals. Here, we investigate the immunological function of Tmhep in responses in microbial infection using RNA interference technology. The results showed that silencing of Tmhep increased the larval mortality against microbial challenge, as well as reduced AMP production compared to the control group (dsEGFP-treated group). Conclusively, Tmhep plays an critical role in antimicrobial defense in T. molitor larvae.
Conductive carbon cloths (CCs) have been great attention as a promising current collector for flexible supercapacitors that supply power to portable and wearable electronics. However, the hydrophobic surface and weak adhesion with active materials has limited to be adopted as the binder-free and flexible electrode with mechanical/electrochemical stability. In this work, we demonstrate preparation of binder-free and flexible electrodes based on polyaniline (PANI) on carbon cloth. Polydopamine (PDA) layer are used to impart hydrophilicity, leading to uniform growth of PANI on the hydrophobic surface of carbon. Furthermore, PDA layer improves adhesion strength between PANI and carbon substrates, which allows for superior mechanical stability under ultrasonic condition. PANI-based flexible electrode shows high areal capacitance (160.8 mF cm− 2 at 0.5 mA cm− 2), good rate capability (71.1% even at high current density of 10 mA cm− 2), and long-term cycling stability (82.6% capacitance retention after 1500 cycles). Furthermore, a quasi-solid-state flexible supercapacitor reveals remarkable mechanical flexibility and durability, with superior capacitance retention (~ 100%) in bent state and after repetitive 1000 cycles.
In this study, the MoS2 nanoparticles grown on crumpled 3D graphene microball (3D GM–MoS2) was synthesized using a microfluidic droplet generator with thermal evaporation-driven capillary compression and hydrothermal reaction. The morphology and size of 3D GM–MoS2 are controlled by the concentration of nano-sized graphene oxide (GO) and the flow rate of oil phase on the droplet generator. The 3D GM–MoS2 with fully sphere-shape and uniform size (~ 5 μm), and homogeneous growth of MoS2 nanoparticles could be synthesized at the flow rate of the oil phase of 60 μL/min with the optimized GO concentration of 1.0 mg/mL, and ( NH4)2MoS4 concentration of 2.0 mg/mL.