검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        21.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to find out the effective induction method of tetraploid plants to obtain potential data for cultivating superior varieties by colchicine treatment. The seed germination were decreased by the higher concentration of colchicine treatment and longer soaking time. A total of 907 individuals were germinated in 16 treated plots except control (untreated plot) and 28 tetraploids were induced which was about 3.1% of the number of seed germinated. The plant regeneration rate by colchicine treatment on explant of Prunella vulgaris for. albiflora Nakai under in vitro culture was decreased with the higher concentration of colchicine. While a total of 312 individuals were regenerated in all treatments, the explant was soaked in more than 0.05% for over 1 hour, tetraploid could be obtained. In particular, for the soaking treatment in 0.05% for 6 hours and 12 hours, 37 tetraploids were induced, which was about 57.8% of the number of plant regenerated. In accordance with the observation on doubling of DNA contents in leaf in order to identify polyploid, the peak DNA content of G1 phase was 101.3 for diploid and 197.2 for tetraploid. The result confirmed the doubling of DNA content. Furthermore, the number of chloroplasts per guard cell depending on polyploid was around 10 in diploid and 19.3 in tetraploid, which was around 1.9 times as much as diploid.
        22.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (≥ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose- 1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.
        23.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        In the present study, different expression of protein from Taekwang was revealed by 2-DE, and expressions of protein on each week after flowering was investigated. After analysis of expression of protein, MALDI-TOF was executed to identify expected protein function. Results revealed that there were three patterns of expression of protein during the maturing. The first pattern was that proteins were gradually expressed as up-regulation from 1 week to 6 week. The second pattern was that proteins were expressed gradually from 1 week to 5 week and then it started down-regulation in 6 week. The last pattern was that proteins were gradually as up-regulation from 1 week to 3 week and then down-regulation until 6 week. This phenomenon suggests that young stage has more protein related to correspondence mechanism against disease and growth and then maturing stage has more expression of protein related to storage protein. In MALDI-TOF analysis, p24 oleosin isoform A protein was identified that relates oleosin which is synthetic product in oil body. This protein spot increased gradually until 5 week and then decreased after 5 week. It explained that the protein is active until maturing stage to protect oil in seed and then its activity has gradually degraded. This result may be expected that a protein, related to growth of a seed has increased until maturing and then a seed fills up with a storage protein
        24.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Soybean is very useful crop to supply vegetable protein for human. Supply of soybean is increased because it has useful ingredient. Recently, cultivation of soybean in paddy field is increasing due to the increase of rice stockpile in Korea. Hence, in this study, expression of protein was identified regarding different environment for cultivation to investigate the effect of different environment on protein expression. Two-dimensional electrophoresis was performed to investigate the expression of protein using image analysis program to measure degree of protein expression in numerical value. Hannam-kong, Beakcheon-Kong, Hwangkeum-Kong, and Danwon-Kong were used as plant material. 2-DE combined with image analysis revealed that each degree of protein expression of Hannam-Kong and Hwangkeum-Kong in upland field was higher than degree of protein expression in paddy field. However, in case of Beackcheon-Kong, the phenomenon was opposite. In Danwon-kong, the degree of protein expression was not different between up-land field and paddy field. To this end, major protein spots were not different between paddy field and upland field among all cultivars. It could be suggested that protein expression is not severely different by various environment, but different environment affects degree of protein expression.
        25.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Two-dimensional electrophoresis (2-DE) was executed to separate the seed storage proteins from the buckwheat. The proteins extracted from the whole seed proteins were better separated and observed in the use of lysis buffer. Using this method, the highly reproducible isoelectric focusing (IEF) can be obtained from polyacrylamide gels, and IEF from the polyacrylamide gel at all the possible pH range (5.0-8.0) was more easily separated than IPG (immobilized pH gradient) gels. The polyacrylamide gels in the first dimension in 2-DE was used to separate and identify a number of whole seed proteins in the proteome analysis. In this new apparatus using 2-DE, 27cm in length of plate coated with polyacrylamide gel was used and the experiment was further investigated under the various conditions.
        26.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effects of Ca-gluconate (Ca-glu) on fruit firmness and softening enzyme activities of hydroponically grown tomato (Solanium esculentum Mill.). The obtained results revealed that the rate of weight loss was markedly increased from at storage to 5 days after storage (DAS) in control, and was constantly increased until 7 DAS as 4.1% in Ca-glu treatment. Fruit firmness was more rapidly decreased in Ca-glu induced fruit compared to control. Results showed that fruit firmness in control and Ca-glu treated fruit were 0.67 and 0.95 kg좵즤12 mm-1, respectively. In our investigation, no difference was revealed in Hunter…s ‥a… value between control and Ca-glu treated fruit. Total carotenoids content of control fruit were rapidly increased while the Ca-glu treated fruit were gently increased. Lycopene content was higher (63.3 즗g;g-1 FW) in control than Ca-glu treatment (56.8 즗g;g-1 FW). The activity of Polygalacturonase (PG) was rapidly increased with increasing storage period as from 0.4 to 1.2 units whereas the PG activity of Ca-glu treatment was gently increased from 1 to 7 DAS, and rapidly increased from 7 to 11 DAS. However, the pectinesterase (PE) activity was rapidly increased in control fruit, when the storage period was increased, but interestingly, the Ca-glu treated fruit was slowly increased from 1 to 7 DAS, and rapidly increased 7to 11 DAS. ?-galactosidase activity of Ca-glu induced fruit was rapidly increased from 1 to 7 DAS as from 1.6 to 3.0 units, and gently increased from 7 to 11 DAS. ?-galactosidase activity of control were higher than Ca-glu treatment.
        27.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely β-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.
        28.
        2014.07 서비스 종료(열람 제한)
        Platycodon grandiflorum is a perennial flowering plant, known as Chinese bell flower, widespread in northeast Asia. The roots of this species are used for centuries to treat diseases, and have extensive pharmacological effects such as reducing adiposity, hyperlipidemia as well as anti-atherosclerotic disorder. In this study, systematical and targeting proteome analysis were executed from the 3, 4 and 5 months aged diploid and tetraploid roots of Platycodon grandiflorum and the proteins were separated by 2-DE and stained by CBB. In diploid roots, a total of 30 protein spots (≥ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Among the 30 differentially expressed proteins, 21 proteins sopts were identified as up-regulated and 9 proteins were identified as down-regulated. In contrary, a total of 40 differentially expressed proteins were confirmed from tetraploid roots whereas 28 protein spots were confirmed as up-regulated and 12 proteins were identified as down-regulated. However, the differentially expressed proteins from diploid and tetraploid roots were classified into 12 and 14 possible functional categories respectively using Protein Information Resources. The results revealed that the identified proteins from diploid and tetraploid roots were mainly involved in oxidoreductase activity, nucleotide binding, transferase activity and catalytic activity in bellflower roots. In conclusion, the exclusive proteins from diploid and tetraploid roots may provide insight clues for better understanding the characteristics and functions of proteins and metabolic activity of Platycodon grandiflorum.
        29.
        2014.07 서비스 종료(열람 제한)
        Platycodon grandiflorum, known as Doraji in Korea, is used in various medications and traditional cuisine in Korea. This study was conducted to characterize the hormonal effects of diploid and tetraploid roots of P. grandiflorum using proteomics technique. Prior to proteome analysis, different kinds of growth hormones; IBA (1mg/L), NAA (1mg/L) and IAA (1mg/L) were applied in the adventitious (Diploid and tetraploid) roots for investigation. Solid (1/4MS) and liquid (1/2MS) medium were performed in the present study to investigate the hormonal effects. In diploid roots, two dimensional gels stained with CBB, a total of 1154 protein spots were identified using image analysis by Ludesi REDFIN 3 programme (Ludesi AB, Lund, Sweden: www.ludesi.com). Out of 1154 differential expressed protein spots, a total of 33 protein spots (≥ 2-fold) were selected for mass spectrometry. Among the 33 protein spots, 7 protein spots were up-regulated in IBA, 12 proteins in NAA and 14 proteins in IAA. In the case of tetraploid roots that performed under solid medium, a total of 842 differentially expressed protein spots were identified of which 34 proteins spots (≥ 1.5-fold) were selected for mass spectrometry. Out of 34 protein spots, 11 proteins were up-regulated in IBA, 10 proteins in NAA and 13proteins in IAA. However, a total of 659 differentially expressed proteins were confirmed from the liquid medium of tetraploid roots from which 32 proteins spots (≥ 1.5-fold) were sorted for MS analysis. Out of these 32 proteins, a total of 3 proteins were up-regulated in IBA, 7 proteins in NAA and 22 proteins in IAA. The identified proteins may provide insight clues for better understanding of the characteristics of proteins and biological activity from adventitious roots of Platycodon grandiflorum.
        30.
        2014.07 서비스 종료(열람 제한)
        The different forms of flowers in a species have drawn thoughtful attention of many evolutionary botanists, including Charles Darwin. Common buckwheat (Fagopyrum esculentum Moench.) is regarded as a dimorphic self-incompatible plant which bears either a pin or a thrum flower. It is revealed that the S supergene the key element to govern the self-incompatibility, flower morphology, and pollen size. Already, we have produced self-incompatible buckwheat lines by an interspecific cross between F. esculentum and F. homotropicum by using embryo rescue. We also notice that the self-compatibility allele, Sh, keeps up the heteromorphic incompatibility. In the past decades, two dimensional gel electrophoresis based proteomics approaches have been applied systematically to identify and profile proteins expressed during pollen development of model plant species. Proteome techniques have vastly been applied in the fields of plant genetics, plant development, and plant physiology and ecology to reveal plant genetic diversity, plant development, differentiation of plant tissue and organ, separation and functional identification of novel component of various organelles, mechanisms of plant adapted to abiotic or biotic stresses including high temperature, low temperature, high salt, drought, and pathogens and insects, and interaction of plant with microbe. However, the plethora of studies related to heteromorphic has added remarkably to our knowledge in the field of the multiple aspects of the breeding system and many researches have provided evidence for the connection between these two components. But in spite of its potential biological significance, the high throughput proteomics analysis of this connection has so far been grossly overlooked. So our attempts are to unravel the proteome investigation in common buckwheat.
        31.
        2014.07 서비스 종료(열람 제한)
        Among the abiotic stresses, heavy metal (HM) toxicity is thought to be one of the major abiotic stresses leading to hazardous effects in plants. In spite of its potential physiological and economical significance, morphological alterations induced by heavy metals in plants have so far been grossly overlooked. In the present study, the morphological and physiological changes were observed in the leaf of sorghum plants treated with different concentrations (0, 50, 100, and 150 μM) of CdCl2. Results revealed that plants endured reduction in growth and morphological changes amazingly altered by cadmium. The growth of sorghum seedlings treated with 150 μM cadmium was more inhibited than that of sorghum seedlings treated with 100 μM Cd, 50μM and non-treated plants. The morphological characteristics revealed that the cadmium stress inhibited the root and shoot elongation after growing the rise seedling in the presence of cadmium. In the case of ion concentration, the concentrations of Zn2+, Ca2+ were decreased whereas Fe2+ concentration was increased except 100 μM under cadmium stress. In confocal microscopy, results showed that the absorption degree of cadmium was increased by the higher concentration of cadmium. The fluorescence intensity of cadmium was also increased. Thus, it seemed that cadmium has an influence on sorghum in the case of early stages of sorghum. This study reported the effects of heavy metal, cadmium on the growth and physiological characteristics of sorghum seedlings, hoping to provide references on the mechanism of heavy metal damaging plants, and phyto-remediation for heavy metal polluted soil.
        33.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micro-propagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species, Fagopyrum esculentum which differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) 2.0 mg · L-1, benzyladenine (BA) 1.0 mg · L-1 and 3% sucrose. Friable callus was transferred to solidified MS media containing BA (1.0 mg · L-1) with various concentrations of 2,4-dichlorophenoxyacetic acid for the induction of embryogenesis. The optimum concentrations of growth regulators (for regeneration of plantlet) were indole-3-acetic acid (2.0 mg · L-1), Kinetin (1.0 mg · L-1), BA (1.0 mg · L-1). Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5% to 20%. Whole plants were obtained at high frequencies when the embryogenic calli with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. The main objective of this research was to develop an efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.
        35.
        2013.07 서비스 종료(열람 제한)
        Common buckwheat has the sporophytic self-incompatibility mechanism and that’s why it has the ability to cross pollinate between two plants with different styles (thepin type and thrum type). The S supergene is thought to govern self-incompatibility, flower morphology and pollen size in buckwheat. Already, we have produced self-compatible buckwheat lines by an interspecific hybridization between Fagopyrum esculentum and F. homotropicum by embryo culture. The pollen size of F1 plants produced by a cross between a pin type plant and the self-compatible plant was similar to that of the self-compatible lines and segregated together with flower morphology without exception. The pollen tubes of the self-compatible plants were compatible with styles of the pin plants but incompatible with the styles of thrum plants. But, the pollen tubes of thrum flowers were compatible with the styles of self-compatible plants. Also, the pollen tubes of pin flowers were incompatible with the styles of self-compatible plants. Already, from these results, we have reported a tentative genotype for heterostyle and homostyle flower types. Homomorphism was controlled by a single allele Sh, while the pin/thrum-complex gene was governed by a single genetic locus S, with two alleles, S and s, which control Ss (thrum-type) as well as the ss (pin-type), respectively. Corresponding represents the case of a single locus S with three alleles, Sh, S and s, and the phenotypes, homomorphic, pin and thrum. It can be characterized by relationship of dominance, S>Sh>s. Using the two self-fertile lines, one is considered as the long-homostyle flowers and the other is considered as the short homostyle flowers. If the short-homostyle trait had arisen by recombination in the S supergene, its genotype would be considered to be GIs ip a/GIs ip a. The pollen tubes of the short-homostylous plant should be compatible with the styles of thrum plants. Also, the pollen tubes of short-homostylous plants should be incompatible with the style of long-homostylous plants, and the reciprocal cross also should be incompatible, because the genotype of long homostyle is gis Ip PA/gis Ip PA. Furthermore, the flower morphology of F1plants produced by the cross between cross and short homostyle flowers should be thrum or short homostyle and only short-homostylous plants should be produced by the cross between pin and short homostyle flowers. However, the compatibility or incompatibility of short homostyle flower was not clarified. So, we need to clarify the compatibility or incompatibility of the style of short homostyle flowers for the next step.
        36.
        2013.07 서비스 종료(열람 제한)
        Grain sorghum (Sorghum bicolor) is a major staple for a large portion of the world. The crop ranks fifth among the cereals world-wide with respect to its importance for food and feed applications. To this end, the grain harvested from sorghum, and the millets provides an important source for dietary calories and protein for approximately one billion people in the semi-arid regions of the world. However, grain sorghum products are known to have relatively poor digestibility, only approximately 50%–70%, in comparison with other grains, such as wheat and maize, which tend to have digestibility percentages over 80% and 70%, respectively. Protein with high digestibility is by definition nutritionally superior owing to the increased availability of amino acids. Digestibility can be impacted by both protein–protein and⁄or protein–nonprotein interactions. However, with respect to grain sorghum, it is thought that the major factor influencing digestibility is the former because of high protein cross-linking around the protein body. To understand the mechanism of seed storage proteins in the sorghum, the proteomic analysis was carried out between the wild(BTX623) and mutant(M271207) genotypes of sorghum. Proteins were separated from the mature seed using IEF in the first-dimension and SDS-PAGE in the second dimension along with hybrid LTQ-FTICR mass spectrometry. After image analysis using Progenesis SameSpot software, we identified the 62 differential expressed protein spots out of 293 protein spots. Out of total differential expressed spots, 35 differential expressed protein spots (more than2-fold) were analyzed by mass spectrometry. Out of 35 protein spots, we were identified 20 protein spots as up-regulated and 15 protein spots as downregulated, significantly. In our proteomic investigation, the candidate proteins may provide novel clues for better understanding the characteristics of seed proteins in Sorghum.
        1 2