Maintaining fuel sheath integrity during dry storage is important. Intact sheath acts as the primary containment barrier for both fuel pellets and fission products over the dry storage periods and during subsequent fuel handling operations. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, sheath stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking (SCC), delayed hydride cracking (DHC), and sheath splitting due to UO2 oxidation for a defective fuel. The failure by creep rupture, SCC or DHC is in the form of small cracks or punctures. The failure by sheath oxidation or sheath splitting due to UO2 oxidation results in a gross sheath rupture. The second step was to examine the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. This step assessed the degradation mechanisms for the fuel integrity. The objective of this assessment is to predict the probability of sheath through-wall failure by a degradation mechanisms as a function of the sheath temperature during dry storage. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the inhouse code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.
This study aimed to examine the effect of a mild elevation in serum cholesterol level in a porcine coronary overstretch restenosis model using a balloon angioplasty catheter or drug-eluting coronary stent. Pigs were divided into two groups and were fed a commercial normal diet (CND, n = 4) or a high-fat diet (HFD, n = 4) for 5 weeks. Coronary overstretch injury by balloon angioplasty or stent implantation was induced in the left anterior descending and left circumflex artery after 1 week of feeding. Histopathological analysis was performed at 4 weeks after coronary injury. During the experiment, the total cholesterol level in the HFD group increased by approximately 44.9% (from 65.9 ± 3.21 mg/dL at baseline to 95.5 ± 9.94 mg/dL at 5 weeks). The lumen area in the CND group was reduced in comparison with that in the HFD group after balloon angioplasty. After stent implantation, the injury score showed no significant difference. There were significant differences in the neointimal area (2.7 ± 0.33 mm2 in the CND group vs. 3.3 ± 0.34 mm2 in the HFD group, p<0.05), lumen area (2.6 ± 0.54 mm2 in the CND group vs. 2.0 ± 0.33 mm2 in the HFD group, p<0.05), and percent area stenosis (52.0 ± 7.96% in the CND group vs. 62.4 ± 5.15% in the HFD group, p<0.05). Body weight change was not different between the two groups. Increased serum cholesterol level activated vascular smooth muscle cell proliferation in the porcine coronary overstretch model.
The citrus flatid planthopper Metcalfa pruinosa, a invasive species causes serious damages to field crops, including sweet persimmon, soybean, maize, especially ginseng (Panax ginseng C.A meyer). We selected six chemical pesticides and one environmental friendly pesticide made from the mixture of derris extracts, citronella oils, and cinnamon extracts in laboratory. These pesticides showed over 90% of control effect in open ginseng field. This study was carried out with the support of the cooperative research program for RDA (project No. PJ0124992018), Republic of Korea.
방울토마토의 수경재배 중 붕소+칼슘+규소 및 칼슘+규소의 복합 엽면시비가 수확 후 품질과 MAP 저장 중 저장성에 미치는 영향을 알아보고자 본 연구를 실시하였다. 엽면시비한 방울 토마토(‘Unicorn’)는 반숙 과상태에서 수확하여 산소투과성 필름으로 포장한 5oC, 11oC, 그리고 24oC에서 25일, 15일, 10일간 저장하였다. 붕소+칼슘+규소 복합처리한 방울토마토가 3가지 저장온도 모두에서 호흡과 에틸렌 발생이 억제되어 MAP 저장중 가장 낮은 생체중 감소와 가장 높은 외관상 품질을 보였다. 수확 후 조사한 방울토마토의 경도, 산도, 비타민 C 함량은 붕소+칼슘+규소 복합처리에서 가장 높았으며, 3가지 온도 모두에서 MAP 저장 후에도 모두 높게 유지되었다. 그러나 과피색, 라이코펜 함량과 당도는 수확 후에는 엽면시비 처리로 차이가 없었으나, 3가지 온도 모두 붕소+칼슘+규소 복합처리에서 가장 낮은 수치를 보였다. 이상의 결과로 볼 때 붕소+칼슘+규소 복합처리는 방울토마토의 수확후 생리 작용을 억제하고 경도, 산도, 비타민 C 함량을 높여 저장성을 향상시키는 것으로 판단되었다
The sweet potato whitefly, Bemisia tabaci (Gennadius) and the western flower thrips, Frankliniella occidentalis (Pergande) are major insect pests that causes crop damage worldwide by piercing leaves, sucking sap and transmitting numerous plant viruses. A new strategy for IPM, the push–pull method uses a combination of repellent intercrops (push) and alluring trap plants (pull) to manipulate the distribution of insect pests and control their populations. So, we surveyed the responses of these pests of tomato to several plants in green house. Lavandula angustifolia, Petunia hybrid, Ocimum basilicum and Rosmarinus officinalis showed about forty-percent push response to F. occidentalis in tomato. However, Gypsophila paniculata attracted the F. occidentalis in tomato on the contrary. Pelargonium tomentosum showed about fifty-percent push response to B. tabaci in tomato. However, Mentha spicata and Gypsophila paniculata attracted the B. tabaci in tomato. The utilization technique of these plants should be more inspected in further study.
The house fly, Musca domestica L. is a serious cosmopolitan pest in livestock production systems. Poultry farmers employ various techniques to control them but rely heavily on the use of chemicals which has the serious drawback of the target pest becoming resistant. We have selected two native natural enemies in Gyeonggi area where selected for the biological control of the house fly. Carcinops pumilio (Erichson) (Coleoptera: Histeridae), commonly found in poultry manure, is an important predator of house fly eggs and larvae. The substitute food source was developed for the mass rearing of C. pumilio. Spalangia nigroaenea (Hymenoptera: Pteromalidae) not only parasitized the host to produce its progeny but also killed host pupae by feeding. The parasitoid induced mortality had an effect on the parasitoid-to-host density relationships.
Present study aimed to determine the effect of ‘bitter melon’, a popularly used fruit in Bangladesh and several other Asian countries, on high-fat-diet-induced type 2 diabetes. To investigate the effect, ethanol extract from bitter melon (BME) as a dietary supplement with mouse chow was used. BME was found to significantly attenuate the high-fat diet (HFD) -induced body weight and total fat mass. BME also effectively reduced the insulin resistance induced by the HFD. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity and reducing hepatic fat and obesity. These results indicate that BME could be effective in attenuating type 2 diabetes and could therefore be a preventive measure against type 2 diabetes.
Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta (PKCη) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated TGFβ3, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as PKCη using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of PKCη, we examined morphological changes, expressions of GAG and COL II after transfection of PKCη -C2 domain in hMSC. Overexpression of PKCη-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that PKCη involves in the TGF-β3-induced chondrogenic differentiation of hMSC, and C2 domain of PKCη has important role in this process.
JAK2 V617F mutation is a common event in chronic myeloproliferative disorders. However, de novo acute myeloid leukemia with JAK2 V617F is rarely encountered. The authors report the case of a 74-year-old male with de novo acute myeloblastic leukemia without maturation (AML M1) and a JAk2 V617F heterozygotic mutation. Despite treatment with standard AML regimens, the patient died 2 months after a diagnosis of acute leukemia. This case of an AML patient with a JAK2 V617F mutation with a poor prognosis suggests that despite its rarity, a JAK2 V617F mutational study be considered for prognostic purposes in AML.