검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 437

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekitty injection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed. The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom observation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely administered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, allowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage. This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclinical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine. The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a veterinary drug in Korea.
        4,000원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The widespread use of smartphones and personal computers has contributed to a rise in thoracic kyphosis, a condition characterized by excessive outward curvature of the upper back. This condition can lead to reduced lung function, poor posture, and decreased spinal angles, all of which can cause reductions in forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1). Furthermore, these issues are often associated with scapular protraction and anterior tilting. Objects: This study aimed to investigate the effects of using a scapular support pillow in people with thoracic kyphosis, as well as determine the changes in respiratory capacity and postural alignment. Methods: Forty-one participants (25 males and 16 females) with thoracic kyphosis (Cobb angle > 40°) were included in the study. Their respiratory function (FVC, FEV1) and body posture (spinal angle, chest expansion, acromion-to-the-wall index) were measured before and after using the scapular support pillow for approximately 30 minutes. FVC, FEV1, spinal angle, chest expansion, and acromion-to-the-wall index were analyzed using paired-t test. The level of statistical significance was set at p < 0.05. Results: The results demonstrated significant improvements in all measured parameters. Both respiratory function and posture-related metrics showed notable increases after using the scapular support pillow. Conclusion: The use of a scapular support pillow can effectively improve respiratory function and postural alignment in patients with thoracic kyphosis. Our research makes a meaningful contribution by proposing an effortless and convenient treatment option for individuals with thoracic kyphosis.
        4,000원
        3.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micromorphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
        4,300원
        4.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2- TPR, CO2- TPD and N2- TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat −1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.
        4,200원
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon has broad application prospects for treating pollutants due to its easy availability, low cost and good adsorption. In our work, nano-activated carbons (NAC) with abundant functional groups are obtained by the oxidation modification of HNO3, ( NH4)2S2O8, and KMnO4, which are used to construct the particle electrodes to degrade NDEA in a continuous flow electrochemical reactor, and the influence of relevant factors on the performance of NDEA removal is discussed. The experimental data show that the optimal degradation efficiency is 42.55% at the conditions of 3 mL/min influent water flow, 0.21 M electrolyte concentration, 10 mA/cm2 current density, and 10 μg/mL initial NDEA concentration. The degradation of NDEA conforms to a quasi second order kinetic equation. The electrocatalytic mechanism of NAC electrodes for removing NDEA is firstly discussed. The effects of different free radicals on the degradation of NDEA are also demonstrated through free radical quenching experiments, indicating that the degradation of NDEA is dominated by ⋅OH. The degradation pathway of NDEA and final products are obtained using GC–MS. NAC particle electrodes as the cheap and efficient electrocatalyst in continuous flow electrochemical reactor system provide a greener solution for the removal of disinfection by-products from drinking water.
        4,500원
        7.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Among the products of the electrocatalytic reduction of carbon dioxide (CO2RR), CO is currently the most valuable product for industrial applications. However, poor stability is a significant obstacle to CO2RR. Therefore, we synthesized a series of bimetallic organic framework materials containing different ratios of tungsten to copper using a hydrothermal method and used them as precursors. The precursors were then subjected to pyrolysis at 800 °C under argon gas, and the M-N bimetallic sites were formed after 2 h. Loose porous structures favorable for electrocatalytic reactions were finally obtained. The material could operate at lower reduction potentials than existing catalysts and obtained higher Faraday efficiencies than comparable catalysts. Of these, the current density of WCu-C/N (W:Cu = 3:1) could be stabilized at 7.9 mA ‧ cm-2 and the FE of CO reached 94 % at a hydrogen electrode potential of -0.6 V (V vs. RHE). The novel materials made with a two-step process helped to improve the stability and selectivity of the electrocatalytic reduction of CO2 to CO, which will help to promote the commercial application of this technology.
        4,500원
        8.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        사범대학 학생은 대학생일 뿐만 아니라 미래의 교사로서 자신의 핵심 소양을 향상시킬 뿐만 아니라 학생의 핵심 소양을 발전시키는 중요한 책 임을 져야 한다. 본 논문의 연구 목적은 사범생의 직업적 인식이 핵심 소양에 미치는 영향을 조사하는 것이다. 연구 방법은 정량적 연구 방법 과 SPSS 26.0 통계 소프트웨어를 사용하여 데이터를 분석하였다. 연구 결과는 사범생의 직업 정체성과 핵심 소양 사이에 유의미한 정적 상관관 계가 있음을 보여주며, 직업적 정체성의 각 차원은 핵심 소양에 예측 효 과가 있는 것을 보여 주었다. 이 연구를 통해 우리는 사범생의 핵심 소 양 형성에 영향을 미치는 요인과 메커니즘을 찾고 사범생의 인재 양성과 기초 교육 발전을 향상시키기 위한 이론적 참고 자료를 제공한다.
        5,800원
        9.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: For instance, forward head posture (FHP), characterized by the forward movement of the head relative to the spine, places significant stress on the neck and upper back muscles, disrupting the biomechanical balance of the body. Objects: The objective of this study was to probe the biomechanical effects of FHP on musculoskeletal health through a relative analysis of 26 adults diagnosed with FHP and 26 healthy controls. Methods: In this study, we evaluated the biomechanical impacts of FHP. Participants adjusted their head positions and underwent muscle strength tests, including electromyography assessments and the Biering-Sørensen test for trunk muscle endurance. Data analysis was conducted using Kinovea (Kinovea) and IBM SPSS software ver. 26.0 (IBM Co.) to compare muscle activities between groups with normal and FHPs. Results: The study shows that individuals with FHP have significantly lower muscle activity, endurance, and spinal extension in the erector spinae compared to those without, highlighting the detrimental effects of FHP on these muscles. Conclusion: This study underscores the impact of FHP on erector spinae function and emphasizes the need for posture correction to enhance musculoskeletal health and guide future research on intervention strategies.
        4,000원
        10.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Moso bamboo, as a kind of renewable functional material, exhibits outstanding development potential. It is promising to prepare activated carbon with good mechanical strength and high specific surface area using moso bamboo as raw material. In this work, we employed a hydraulic extruder to extrude the bamboo charcoal and the adhesive to obtain the moso bamboo activated carbon, and improved the specific surface area of the columnar activated carbon through high-temperature water vapor activation. Through the catalytic role of the water vapor activation process, the formation and expansion of the pores were promoted and the internal pores were greatly increased. The obtained columnar activated carbon shows excellent mechanical strength (93%) and high specific surface area (791.54 m2/ g). Polyacrylamide@asphalt is one of the most effective adhesives in the high-temperature water vapor activation. The average pore size (22.99 nm) and pore volume (0.36 cm3/ g) of the prepared columnar activated carbon showed a high mesoporous ratio (83%). Based on the excellent pore structure brought by the activation process, the adsorption capacity of iodine (1135.75 mg/g), methylene blue (230 mg/g) and carbon tetrachloride (64.03 mg/g) were greatly improved. The resultant moso bamboo columnar activated carbon with high specific surface area, excellent mechanical properties, and outstanding adsorption capacity possesses a wide range of industrial applications and environmental protection potential.
        4,600원
        11.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the wide application of portable wearable devices, a variety of electronic energy storage devices, including microsupercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced threedimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H2SO4 as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm− 2 at the scanning rate of 5 mV s− 1, which is much higher than the 2.89 mF cm− 2 of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.
        4,800원
        16.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
        4,000원
        17.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인도 태평양 지역의 지정학적 긴장이 고조됨에 따라 안보 연구에서 쿼 드의 중요성이 점점 더 커지고 있다. 이 글에서는 일본이 쿼드를 다시 주창하기로 한 원인을 살펴본다. 연구에 따르면 쿼드에 대한 일본의 입 장은 쿼드의 소다자주의적 특성과 일본의 국내 정치라는 두 가지 요인에 의해 영향을 받는 것으로 나타났다. 소다자주의적 특성은 쿼드가 일본이 참여하기에 '편리한' 플랫폼이라는 점을 시사하며, 국내 정치 측면에서는 아베 총리가 두 번의 임기 동안 주장한 가치 외교가 쿼드와 잘 부합한다 는 점을 드러낸다. 결과적으로 쿼드는 일본에게 실질적인 지정학적 '도구 '로 기능하고 있다.
        6,600원
        18.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM’s durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.
        4,300원
        19.
        2024.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study explores the histological features and Bmp4 expression patterns in the replaced tooth germ of Xenopus laevis . Tooth germ formation starts from the dental placode through epithelial-mesenchymal interactions, involving various signaling pathways such as Fgf, Shh, Bmp, and Wnt. In mice, Bmp4 expression in the dental placode inhibits Pax9 expression in the dental mesenchyme. Although absent in the presumptive dental lamina of birds and toothless mammals, Bmp4 remains conserved in reptiles and fish owing to gene duplication. However, its expression in amphibian tooth germs is poorly understood. Three-month-old X. laevis were employed in this study. Initially, samples underwent paraffin embedding and were sectioned into 5 or 12 μm ribbons for H&E staining and in situ hybridization, respectively. Results revealed teeth appearing in two maxillary rows: the labial side, with prefunctional and functional teeth, and the lingual side, with replaced tooth germs behind functional teeth. Enameloid was observed between the inner dental epithelium and dental mesenchyme at the cap or early bell stages, whereas enamel and dentin formed during the late bell or mineralization stages from the replaced tooth germ. Bmp4 expression was evident in the inner dental epithelium (ameloblasts), dental papilla (odontoblasts), stellate reticulum, and Hertwig’s epithelial root sheath. Overall, these findings highlight the conservation of Bmp4 expression in X. laevis tooth development.
        4,000원
        20.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu2+/polyacrylonitrile composite fibers were prepared by electrospinning, and then Cu/carbon nanofibers (denoted as Cu/ CNF-X; X = Cu content, 0, 3, or 5 wt%) were formed by calcining them. The effects of Cu2+ content and carbonization temperature on the conductivity and electrothermal conversion of Cu/CNF-X were investigated. The results revealed that the conductivity and electrothermal properties of Cu/CNF-X improve with the increase in the Cu2+ content and carbonization temperature. When the carbonization temperature was 800, 900, or 1000 °C, the conductivity of Cu/CNF-5 (0.08, 0.68, or 2.48 S/cm, respectively) increased to 1.6, 1.5, or 1.6 times that of Cu/CNF-0, respectively. The highest instantaneous surface temperatures of Cu/CNF-5 calcined at 800, 900, and 1000 °C (36, 145, and 270.2 °C, respectively) increased by 4, 25.5, and 44.6 °C, respectively, compared with those of the corresponding Cu/CNF-0 samples (32, 120.3, and 225.6 °C, respectively). Thus, the addition of a small amount of Cu2+ effectively improved the conductivity and electrothermal conversion performance of Cu/CNF-X, which has potential application value in industrial products in the future.
        4,000원
        1 2 3 4 5