검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,674

        194.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The SLA 3d printer is the first of the commercial 3D printer. The 3D printed output is printed hanging on the bed that move to the upper position. Sandblasted bed is used to prevent layer shift. If sandblasting is wrong, the 3D printed output is layer shifted. For this reason, 3D printer manufacturing companies inspect the bed surface. However, the sandblasted surface has variety of irregular shapes and craters, so it is difficult to establish a quality control standard. To solve problems, this paper presents a standardized sandblasting histogram and threshold. We present a filter that can increase the classification rate.
        4,000원
        195.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a highquality additive manufacturing product.
        4,000원
        196.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        석유 정제 시설 등에서 발생하는 함유폐수의 처리는 폐수의 유류 허용한계를 넘기지 않기 위해 중요한 공정이다. 세라믹 멤브레인은 유류 처리에서의 높은 효율, 내화학성, 내열성, 기계적 안정성, 그리고 단순한 작동 원리 등의 장점을 가지 고 있어 함유폐수의 처리에 효과적이다. 그러나 세라믹 멤브레인은 원재료의 높은 가격 때문에 널리 사용되는 데에 한계가 있다. 최근에는 이를 해소하기 위해 플라이 애시나 점토를 사용하는 노력도 있었다. 이 리뷰는 세라믹 멤브레인의 효율과 제 작을 실리콘, 알루미나, 그리고 폐석탄회의 재료로 나누었다.
        4,000원
        197.
        2022.10 구독 인증기관·개인회원 무료
        In the pilot scale test, the two scale-up factors (Electric energy per order EEO, Electric energy per mass EEM) were conducted to design the Chemical Waste Decomposition & Treatment System (CWDS). The CWDS consist of two kind UV lamp reactors to improve the decomposition rate of oxalic acid, which are low pressure amalgam UV lamp and medium pressure UV lamp. The two reactors were connected in series, and the hydrogen peroxide is mixed through a line mixer at the front of the reactor and injected into the reactors. The CWDS was connected with the full system decontamination equipment to purify the residual oxalic acid after chemical decontamination process. The full system decontamination equipment were included Oxidizing Agent Manufacturing System (OAMS), Chemical Injection System (CIS), RadWaste Treatment System (RWTS) to operate the Oxidation/Reduction decontamination process and purify the process water. After decontamination process, the waste water will be cooled down into the 40°C and passed through the UV reactor at 110 gpm with hydrogen peroxide injection. The concentration of waste water is expected oxalic acid 1,700 ~ 2,000 ppm, Iron 5 ~ 20 ppm. As a result of the CBD test in the laboratory with simulated waste liquid, the amount of Low pressure amalgam lamp UV dose required to decompose 95% of oxalic acid in 2 m2 waste water was up to 1,800 mJ/cm2. The amount of medium pressure lamp UV dose was up to 450 mJ/cm2 at the same condition. We conducted demonstration test using 2 m2 waste water after the oxidation/reduction decontamination process, the decomposition rate 95% was obtained by low pressure amalgam UV lamp and medium pressure UV lamp reactor each.
        198.
        2022.10 구독 인증기관·개인회원 무료
        Kori unit 1 was permanently shut down in 2007 and is currently awaiting approval for decommissioning and dismantling (D&D). The wastes generated during decommissioning is estimated to be approximately 14,500 of 200 L drums. In this study, the treatment process of decommissioning wastes will be reviewed through the case of the US Zion nuclear power station (ZNPS). Zion unit 1 and 2 received an operating license in 1973 and were permanently shut down and the spent nuclear fuel was transferred to the pool in 1998. The decommissioning was carried out according to the following five steps; (1) safe storage (SAFSTOR) dormancy, (2) preparation for decommissioning, (3) establishment of independent spent fuel storage installation (ISFSI) and transfer of the spent fuel and greater than class C radioactive materials, (4) decommissioning operations and (5) site restoration. The total volume of waste generated during decommissioning was expected to be approximately 1.7×105 m3. This is far above the Kori unit 1 waste estimation because ZNPS has a history of accidents and includes soil waste. Wastes were treated differently according to their properties and locations.
        199.
        2022.10 구독 인증기관·개인회원 무료
        In the field of 3H decontamination technology, the number of patent applications worldwide has been steadily increasing since 2012 after the Fukushima nuclear accident. In particular, Japan has a relatively large number of intellectual property rights in the field of 3H processing technology, and it seems to have entered a mature stage in which the growth rate of patent applications is slightly reduced. In Japan, tritium is being decontaminated through the Semi-Pilot-class complex process (ROSATOM, Russia) using vacuum distillation and hydrogen isotope exchange reaction, and the Combined Electrolysis Catalytic Exchange (CECE, Kurion, U.S.) process. However, it is not enough to handle the increasing number of HTOs every year, so the decision to release them to the sea has been made. Another commercial technology in foreign countries is the vapor phase catalyst exchange process (VPCE) in operation at the Darlington Nuclear Power Plant in Canada. This process is a case of applying tritium exchange technology using a catalyst in a high-temperature vapor state. The only commercially available tritium removal technology in Korea is the Wolseong Nuclear Power Plant’s Removal Facility (TRF). However, TRF is a process for removing HTO from D2O of pure water, so it is suitable only for heavy water with high tritium concentration, and is not suitable for seawater caused by Fukushima nuclear power plant’s serious accident, and surface water and groundwater contaminated by environmental outflow of tritium. Until now, such as low-temperature decompression distillation method, water-hydrogen isotope exchange method, gas hydrate method, acid and alkali treatment method, adsorption method using inorganic adsorbent (zeolite, activated carbon), separator method using electrolysis, ion exchange adsorption method using ion exchange resin, etc. have been studied as leading technologies for tritium decontamination. However, any single technology alone has problems such as energy efficiency and processing capacity in processing tritium, and needs to be supplemented. Therefore, in this study, four core technologies with potential for development were selected to select the elemental technology field of pilot facilities for treating tritium, and specialized research teams from four universities are conducting technology development. It was verified that, although each process has different operating conditions, tritium removal performance is up to 60% in the multi-stage zeolite membrane process, 30% in the metal oxide & electrochemical treatment process, 43% in the process using hydrophilic inorganic adsorbent, and 8% in the process using functional ion exchange resin. After that, in order to fuse with the pretreatment process technology for treating various water quality tritium contaminated water conducted in previous studies, the hybrid composite process was designed by reflecting the characteristics of each technology. The first goal is to create a Pilot hybrid tritium removal facility with 70% tritium removal efficiency and a flow rate of 10 L/hr, and eventually develop a 100 L/hr flow tritium removal system with 80% tritium removal efficiency through performance improvement and scale-up. It is also considering technology for the postprocessing process in the future.
        200.
        2022.10 구독 인증기관·개인회원 무료
        Organic waste generated by small and medium-sized (S&M-sized) metal decontamination in NPP decommissioning. To lower the concentration of these organic substances for a level acceptable at the disposal site, the project of “Development of Treatment Process of Organic Decontamination Liquid Wastes from Decommissioning of Nuclear Power Plants” is being carried out. The conditioning and treatment process of organic liquid waste was designed. Also, the literature was investigated to make simulated organic liquid waste, and the composition of these waste was analyzed and compared. As the decontamination agent, organic acids such as EDTA, oxalic acid, citric acid are used. The sum of the concentrations of these organic materials was set to a maximum value of 1,000 ppm. The major metal ions of the decontamination liquid waste estimated are 59Fe, 51Cr, 54Mn, 63Ni, and the concentrations are respectively 527, 163, 161, 159 ppm. Additional major metal ions are 60Co, 58Co, 137Cs. 58Co is replaced by 60Co because it has the same chemical properties as 60Co. Unlike the HLW, the contamination level of S&M-sized metal in primary system was quite low, so 60Co is set to 2,000 Bq/g. Considering the contribution of fission and gamma ray dose constant, 137Cs was estimated to 360 Bq/g. Also, suspended solids of decontamination liquid waste were set at 500 ppm. Under these assumptions, the simulated organic liquid waste was made, and then organic substances and metal ions were analyzed with TOC analyzer and ICP-OES. The TOC analysis value was expected to 392 ppm in consideration of the equivalent organic quantity. the test result was 302 ppm. Some of organics appears to have been decomposed by acid. The values of metal ions (Fe3+, Cr3+, Mn2+, Ni2+) analyzed by ICP-OES are 139, 4, 152, 158 ppm, respectively. A large amount of Cr3+ and Fe3+ were expected to exist as ions, but they existed in the form of suspended solid. Mn2+ and Ni2+ came out similar to the expected values. The designed conditioning and treatment process is largely divided into pretreatment, conditioning, and decomposition processes. After collecting in the primary liquid waste storage tank, large particulate impurities and suspensions are removed through a pretreatment process. In the conditioning process, treated liquid waste passes through UF/RO membrane system, and pure water is discharged to the environment after monitoring. Concentrated water is decomposed in the electrochemical catalyst decomposition process, then this water secondarily passes through the RO membrane system and then discharged to the environment after monitoring. Through an additional experiment, the conditioning and treatment process will be verified.