검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 546

        201.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.
        4,000원
        202.
        2013.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Quantum dots(QDs) with their tunable luminescence properties are uniquely suited for use as lumophores in light emitting device. We investigate the microstructural effect on the electroluminescence(EL). Here we report the use of inorganic semiconductors as robust charge transport layers, and demonstrate devices with light emission. We chose mechanically smooth and compositionally amorphous films to prevent electrical shorts. We grew semiconducting oxide films with low free-carrier concentrations to minimize quenching of the QD EL. The hole transport layer(HTL) and electron transport layer(ETL) were chosen to have carrier concentrations and energy-band offsets similar to the QDs so that electron and hole injection into the QD layer was balanced. For the ETL and the HTL, we selected a 40-nm-thick ZnSnOx with a resistivity of 10Ω·cm, which show bright and uniform emission at a 10 V applied bias. Light emitting uniformity was improved by reducing the rpm of QD spin coating.At a QD concentration of 15.0 mg/mL, we observed bright and uniform electroluminescence at a 12 V applied bias. The significant decrease in QD luminescence can be attributed to the non-uniform QD layers. This suggests that we should control the interface between QD layers and charge transport layers to improve the electroluminescence.
        4,000원
        203.
        2013.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.
        4,000원
        204.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at 1000˚C under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.
        4,000원
        205.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at 150˚C without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by 180˚ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. 100//ND texture was primarily developed near the surface and center of thickness for the CR, while 110//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.
        4,000원
        206.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than 20μm in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.
        4,000원
        207.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately 60˚. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/cm2. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.
        4,000원
        208.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of carrier gases (He, ) on the properties of Ti coating layers were investigated to manufacture high-density Ti coating layers. Cold spray coating layers manufactured using He gas had denser and more homogenous structures than those using gas. The He gas coating layers showed porosity value of 0.02% and hardness value of Hv 229.1, indicating more excellent properties than the porosity and hardness of gas coating layers. Bond strengths were examined, and coating layers manufactured using He recorded a value of 74.3 MPa; those manufactured using gas had a value of 64.6 MPa. The aforementioned results were associated with the fact that, when coating layers were manufactured using He gas, the powder could be easily deposited because of its high particle impact velocity. When Ti coating layers were manufactured by the cold spray process, He carrier gas was more suitable than gas for manufacturing excellent coating layers.
        4,000원
        209.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous Al2O3 dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous Al2O3, camphene was used as the sublimable vehicle. Camphene slurries with Al2O3 content of 10 vol% were prepared by milling at 50˚C with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to -25˚C while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at 1400˚C for 1 h. Cu particles were dispersed in porous Al2O3 by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about 150μm; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated Al2O3 particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous Al2O3 with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.
        4,000원
        210.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at , 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.
        4,000원
        211.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper introduces an effect of a preparing -Ag composite on its mechanical properties and microstructure. In present study, -Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into powder during wetting dispersive milling in D.I. water. Each sample was sintered at for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated showed homogeneously dispersed Ag in in where pore defect did not appear. However, -nano Ag and -micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.
        4,000원
        212.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > 1μm) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.
        4,000원
        213.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of a copper alloy sheet processed by differential speed rolling (DSR) were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication and with a differential speed ratio of 2.0:1. For comparison, conventional rolling (CR), in which the rolling speeds of the upper and lower rolls is 2.0 m/min, was also performed under the same rolling conditions. The shear strain of the sample processed by CR showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. On the other hand, the sample processed by the DSR showed zero or positive shear strain values at all positions. However, the microstructure and mechanical properties of the as-rolled copper alloys did not show such significant differences between the CR and the DSR. The samples rolled by the CR and the DSR exhibited a typical deformation structure. In addition, the DSR processed samples showed a typical rolling texture in which 112<111>, 011<211> and 123<634> components were developed at all positions. Therefore, it is concluded that the DSR was very effective for the introduction of a uniform microstructure throughout the thickness of the copper alloy.
        4,000원
        214.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, β(Mg17Al12) and Al8Mn5, along with α-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the β phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of Al2Ca adjacent to the β compounds, and that inhomogeneous enrichment of elemental Ca was observed within the β phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At 175˚C, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing β phase and the introduction of a stable Al2Ca phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.
        4,000원
        215.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of 152˚ and sliding angle less than 2˚. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.
        4,000원
        216.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the foam with open and closed-cell structure, cell size ranging from to having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at for 2 h in air.
        4,000원
        217.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        was successfully formed on a Ti specimen by MAO (Micro-Arc-Oxidation) method treated in electrolyte. This study deals with the influence of voltage and working time on the change of surface microstructure and phase composition. Voltage affected the forming rate of the oxidized layer and surface microstructure where, a low voltage led to a high surface roughness, more holes and a thin oxidized layer. On the other hand, a high voltage led to more dense surface structure, wider surface holes, a thick layer and fewer holes. Higher voltage increases photocatalytic activity because of better crystallization of the oxidized layer and good phase composition with anatase and rutile , which is able to effectively separate excited electrons and holes at the surface.
        4,000원
        218.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 and the irregular shape of less than 5 , respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.
        4,000원
        219.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel β Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at 1000˚C under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from α phase to β phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. β Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, CaTiO3, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.
        4,000원
        220.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from 20μm in the base material to 8.5μm in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.
        4,000원