검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 998

        301.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS: Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS: From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS: For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.
        4,000원
        302.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper focuses on strength development according to the mix design with cement type and mineral admixture from laboratory and field tests in cool weather. METHODS : Two methods evaluated the mix design of concrete pavement in cool weather. Firstly, laboratory tests including slump, air contents, setting time, strength, maturity, and freezing-thawing test were conducted. Three alternatives were selected based on the tests. Secondly, a field test was conducted and the optimum mix design in cool weather was suggested . RESULTS : It is an evident from the laboratory test that a mix with type Ⅲ cement showed better performance than the one with type Ⅰ cement. There was a delay in strength development of a mix with mineral admixture compared to mix design without any mineral admixture. In the field test, type Ⅲ cement+flyash 20% mix design proved the best performance. CONCLUSIONS : For concrete pavement in cool weather, mix design using type Ⅲ cement could overcome the strength delay due to mineral admixture. Moreover, it is possible to make sure of durability of pavement. Therefore, strength and durability problems due to cool weather would decrease.
        4,000원
        303.
        2017.04 구독 인증기관 무료, 개인회원 유료
        The durability degradation of concrete pavement by winter deicer is brought up as a significant risk, and its maintenance brings a high expense. Therefore, a proper repair materials for such concrete pavement are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and dry shrinkage of Chemically bonded ceramics(CBC) and Calcium Sulfo Aluminate based ultra rapid harding cement(CSA) were assessed to evaluate its applicability as a repair material of concrete pavement road. As a result, the CBC mortar flow showed a 220㎜, and the initial setting time of CBC was 18 minutes. The compressive strength of CBC mortar was 31.3㎫ in 2 hours, 56.6㎫ in 24 hours, and 79.1㎫ in 28 days, showing a significant level. And the ability to resist chloride ion penetrations of CBC showed 433 Coulombs, which fell under very low level. The drying shrinkage of CBC mortar until 56 days was between 150 × 10-6 with -100 × 10-6, showing a significant very low level. As above, CBC has excellent compressive strength, chloride ion penetration resistance, and volume stability, and showed better performance than CSA. Therefore, CBC in the future could be used in repair of concrete pavement.
        3,000원
        304.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES :This study proposes standards for rural access road pavement section and thickness design considering existing access road construction conditions; the study also proposes a complementary policy that can be used for design convenience.METHODS:Various literature review and case studies had been performed in terms of rural access road section and thickness design, both domestically and internationally, and this was followed by domestic rural access road field surveys. KPRP and KENLAYER were used to analyze the commonalities and predict the remaining life. Data on real cost is used to select an appropriate construction method through economic analysis.RESULTS:The economic efficiency of concrete pavement (15×15) was the highest in terms of economic efficiency of performance life and traffic volume. In the case of asphalt pavement, it is considered that the most economical method is to implement micro-surfacing method four times as a preventive maintenance method (once every 10 years and 4.5 years for asphalt concrete pavement and MS construction method, respectively). Repairable asphalt pavement is advantageous for areas where heavy vehicles are expected to pass. In the case of other general areas, it is considered economical to place concrete (15×15) pavement. However, as analytical results on its performance life are unavailable, it is to be considered for study in the future.CONCLUSIONS :This study proposed interim design guidelines based on various domestic and international design guidelines and case studies. However, in order to develop the final design criteria applicable to the field, it is necessary to (a) estimate the bearing capacity of the lower level of the pavement at various sites, (b) estimate the daily traffic volume, (c) implement advanced low-cost pavement technologies, and (d) propose maintenance standards and techniques for long-term performance.
        4,600원
        305.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction.METHODS :For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests.RESULTS :Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior.CONCLUSIONS:Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.
        4,200원
        306.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:The objectives of this study are to develop a new cold-applied crack sealant and to evaluate its properties and field applicability by comparing with other conventionally used crack sealants.METHODS :A new cold-applied crack sealant was developed by using neoprene latex to improve material properties. The fundamental properties such as viscosity, residue %, penetration, and softening point of the developed crack sealant were tested by TxDOT criteria to evaluate crack sealing capability. Moreover, the performance of the developed cold-applied crack sealant was evaluated under both laboratory and field conditions. In the laboratory, the bond property was evaluated using the developed cold-applied crack sealant and conventional hotapplied crack sealant by the bond-properties test standardized under ASTM D 6690. In the field, test sections were constructed on three areas: a trunk road, bus-only lane, and motorway, with the developed crack sealant and three conventional crack sealants. After construction, early field-inspection was performed on the test sections.RESULTS AND CONCLUSIONS :Overall, the developed cold-applied crack sealant demonstrates reasonable storage stability, durability, and bond property compared to conventional hot-applied crack sealants. From the test sections, it was established that the developed cold-applied crack sealant does not pose construction issues. Moreover, the early performance was verified through field inspection. However, as the field inspection was conducted a week after the construction, it is necessary to conduct an inspection of performance from a long-term point of view.
        4,000원
        307.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:The purpose of this paper is to evaluate interface performance while using various tack coat materials for asphalt overlay.METHODS:The evaluation was conducted with tracking test, permeability, and interface bond strength. Tracking test was conducted using an image processing technique, to investigate the susceptibility of the tack coat materials. BBS and pull-off test were conducted to evaluate bond strength. The permeability test was conducted to evaluate the effect of tack coat materials.RESULTS :Results reveal that the trackless tack coat material demonstrates less tracking compared to other materials. Moreover, both BBS and pull-off tests can effectively evaluate the bond strength at the interface. RSC-4 was measured less bond strength. Moreover, tack coat prevents water penetration through the surface and aids the extension of the surface life of asphalt pavement.CONCLUSIONS :Trackless tack coat demonstrated a high and consistent bond strength performance. The tack coat types demonstrate marginally different performance as function of curing times. Field applicability was tested based on visual observation. Therefore, these should be considered when trackless tack coat is slightly enhanced the pavement performance based on limited this study results. Finally, it is necessary to allow reasonable time for the tack coat to completely cure.
        4,000원
        309.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This research was a fundamental study on the application of an integral TiO2 solution to asphalt concrete pavement. The integral TiO2 solution was produced in pilot production equipment; application of the integral TiO2 solution to asphalt pavement was conducted to examine the pollution-reducing capability of photocatalytic compounds such as TiO2. The photocatalytic TiO2 reacted with air pollutants, converting them into small amounts of relatively benign molecules. METHODS : In this study, laboratory experiments were conducted using five various testing methods. Tensile strength ratio (TSR) and British pendulum test (BPT) were conducted in order to evaluate the properties of asphalt pavement subsequent to the integral TiO2 solution coating. In addition, methylene blue testing, a measurement of nitrate on the coated pavement, and nitrogen oxide (NOx) reduction testing were conducted in order to evaluate photocatalytic reaction. Lastly, a UV-A lamp was used as a light source for photocatalytic reactions. RESULTS : Test results indicated no change in the properties of asphalt pavement following the integral TiO2 solution coating. In order to evaluate the performance of asphalt pavement as a function of TiO2, the moisture susceptibility and skid resistance were investigated. The moisture susceptibility and skid resistance satisfied there quirements related to pavement quality and safety specification. Furthermore, the effects of reduction of air pollution were significantly improved as determined via the methylene blue test and NOx reduction test. The TiO2-paved asphalt specimen exhibited approximately 43% reduction of NOx. CONCLUSIONS : This study has suggested that applying TiO2 rarely impacts asphalt pavement performance measures such as moisture susceptibility and skid resistance, and that its application may be a better means of reducing air pollution. Further studies, such as proper TiO2 dosage rates and compatibility with various pavement types, are required to broaden and generalize its application.
        4,000원
        310.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS: Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS: According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.
        4,000원
        311.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study is primarily focused on evaluating the effects of the non-linear stress-strain behavior of RAP concrete on structural response characteristics as is applicable to concrete pavement. METHODS : A 3D FE model was developed by incorporating the actual stress-strain behavior of RAP concrete obtained via flexural strength testing as a material property model to evaluate the effects of the non-linear stress-strain behavior to failure on the maximum stresses in the concrete slab and potential performance prediction results. In addition, a typical linear elastic model was employed to analyze the structural responses for comparison purposes. The analytical results from the FE model incorporating the actual stress-strain behavior of RAP concrete were compared to the corresponding results from the linear elastic FE model. RESULTS : The results indicate that the linear elastic model tends to yield higher predicted maximum stresses in the concrete as compared to those obtained via the actual stress-strain model. Consequently, these higher predicted stresses lead to a difference in potential performance of the concrete pavement containing RAP. CONCLUSIONS : Analysis of the concrete pavement containing RAP demonstrated that an appropriate analytical model using the actual stress-strain characteristics should be employed to calculate the structural responses of RAP concrete pavement instead of simply assuming the concrete to be a linear elastic material.
        4,000원
        312.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES: Bituminous materials, such as tack coat, are utilized between pavement layers for improving the bond strength in pavement construction sites. The standards regarding the application of bituminous material are not clearly presented in the Korean construction guideline without RS(C)-4. Hence, the objective of this study is to determine the optimum content of bituminous materials by analyzing interlayer shear strength (ISS) from the direct shear tester, which was developed in this research. The shear strength of tack coat was defined with the sort of bituminous materials. METHODS : The mixtures for the shear test were made using marshall mix design. The specimens were vertically and horizontally separated for the direct shear test. The separated specimens were bonded using bituminous material. The objectives of the experiment are to determine the performance of bond and shear properties resulting from slippage, rutting, shovel, and corrugation of asphalt pavements. A machine based on the Louisiana interlayer shear strength tester (LISST) of NCHRP Report-712 was developed to determine the ISS. The applied types of tack coat were RS(C)-4, AP-3, QRS-4, and BD-coat with contents of 0.3ℓ/m2, 0.45ℓ/m2, 0.6ℓ/m2, and 0.8ℓ/m2, respectively. RESULTS: Table 2 gives the results of the direct shear test using the developed shear machine. The BD-coat type indicated the highest average ISS value compared to the others. Between the surface and binder course, optimum tack coat application rates for AP-3, RS(C)-4, QRS-4, and BD-Coat were 0.6ℓ/m2, 0.3ℓ/m2, 0.6ℓ/m2, and 0.45ℓ/m2, respectively. These optimum contents were determined using the ISS value. CONCLUSIONS: The ISS values of AP-3, RS(C)-4, and QRS-4 showed similar tendencies when ISS increased in the range 0.3~0.6ℓ/m2, while ISS decreased when the applied rate exceeded 0.6ℓ/m2. Similarly, the highest ISS value of the BD-coat was observed when the applied rate was 0.45 ℓ/m2. However, shear strength was similar to the maximum value of ISS when the tack-coat application rate of BD-Coat exceeded 0.45ℓ/m2.
        4,000원
        313.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS: The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.
        4,000원
        314.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES : This study develops an evaluation method, which is useful to inspect pavement condition of specific boroughs. This is because pavement condition is broadly divided into five grades via visual inspection, which does not consider the types of deteriorations, and is decided by an investigator having a subjective viewpoint. This visual inspection method is not a satisfactory method for accurate maintenance when various deteriorations occur. METHODS: The performance model considers several factors such as crack, rutting, and IRI. This method is also modified from borough SPI based on SPI (Seoul Pavement Index). Considering limited budget of borough, PI (prediction index) is suggested, which is related to the grade of pavement condition evaluation and type of materials. Practical correlation review is also conducted with statistical verification by using the Monte Carlo simulation. RESULTS: The results of the study show that modified criteria are reasonable. First, the comparison between the visual inspection result and the SPI result indicates that the R-square value is sufficiently high. Second, through the common section, each evaluation method could be compared, and the result shows considerable similarity, which increases when the range is modified. Finally, PI for predicting remaining life and the random number SPI have common parts, which means that each indicator would be adequate to be used as an evaluation method. CONCLUSIONS : Comparison and analysis results show that the developed evaluation method is reasonable for specific boroughs where financial support is inadequate for the evaluation process by using the newer equipment. Moreover, for more accurate evaluation method, previous visual inspection data should be utilized, and the database of inspection equipment have to be collected.
        4,000원
        315.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES: This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS: The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS: It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.
        4,000원
        316.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in internationalstandard airport deicers and their impacts on pavements. METHODS: Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.
        4,000원
        317.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS: A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5 m*0.3 m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.
        4,000원
        318.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, noise reduction effect of a two-layer porous asphalt pavement was investigated through site measurement and computer simulation. METHODS: To examine noise reduction effect, a 3 km long quiet pavement was installed by removing previous normal pavement, which had a rather low porosity. The studied site was a high-rise apartment building surrounded by the quiet pavement and Seoul ring road with heavy traffic volume, indicating relatively high background noise. RESULTS: The measurement result before and after installing the quiet pavement showed a noise reduction effect of 4.3 dB(A) at a distance of 7.5 m from the road. After validating the accuracy of simulation using SoundPLAN, the reduction in SPL(sound pressure level) at the facades by the quiet pavement was predicted by considering five different road conditions generating traffic noise from each road or in the combination of the quiet pavement and Seoul ring road. In the case of no noise from Seoul ring road, noise reduction at the facades was 4.2 dB(A) on average for 702 housing units. With background noise from Seoul ring road, however, the average SPL decreased to 2.0 dB(A). Regarding subjective response of noise, the number of housing units with a noise reduction of over 3 dB(A) was 229 out of 706 units (approximately 32%). For 77 housing units, the noise reduction was between 1~3 dB(A), while it was less than 1 dB(A) for 400 housing units. CONCLUSIONS: The overall result indicates that the quiet pavement is useful to reduce noise evenly at low and high floors compared to noise barriers, especially in the urban situation where background noise is low.
        4,000원
        319.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to evaluate the effect of the quiet pavement on reducing a barrier height by using a prediction tool called SoundPLAN. METHODS: Firstly, the prediction was carried out to evaluate the difference in the maximum noise level at a building facade between the normal and the quiet pavements without a barrier. After calculating the noise reduction effect by the quiet pavement, a comparable barrier height to obtain the same noise reduction effect with it was predicted according to designable factors including road-building distance(10 m, 20 m, 40 m) and road-barrier distance(5 m, 10 m, 20 m, 30 m). RESULTS: The result showed that within the considered designable factors, the maximum barrier height was 37 m, 52 m, and 55 m to have the same noise reduction effect by the quiet pavement reducing 1 dBA, 3 dBA , and 5 dBA, respectively. It was evaluated that the barrier height increased with the increase of the road-building and road-barrier distances. To simulate the real situation in urban areas and to evaluate the combined effect of the normal/quiet pavement and barrier, the barrier height was fixed as 6 m. It was predicted that the noise level would reduce to as low as 0.2 dBA by the combination of normal pavement and barrier. On the other hand, the combination of the quiet pavement and barrier reduced 1.2 dBA, 3.2 dBA, and 5.2 dBA, respectively, for quiet pavement reducing 1 dBA, 3 dBA, and 5 dBA. CONCLUSIONS: A guideline needs to be suggested to select appropriate noise abatement schemes by considering factors such as the roadbuilding and road-barrier distances.
        4,000원
        320.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study focuses on the evaluation of interface performance with varying surface texture and tack coat application in an asphalt overlay. METHODS : The evaluation is carried out in two phases: tracking test and interface bond strength test. Using an image processing tool, tracking test is conducted to evaluate the susceptibility of the tack coat material to produce excessive tracking during application. Using the pull-off test method, the bond strength test is performed to determine the ability of the interface layer to resist failure. RESULTS: Results show that the underseal application yields less tracking compared to other applications. However, the bond strength is barely within the minimum acceptable value. On the other hand, RSC-4 produces higher bond strength for all surface types, but the drying time is long, which produces excessive tracking. CONCLUSIONS: While underseal application may be suitable for a trackless condition, the bond strength is less appealing compared to the rest of the tack applications available. RSC-4 demonstrated a high and consistent bond strength performance, but more time is required for drying to avoid excessive tracking. Tack coat application and surface type combination produce varying results. Therefore, these should be considered when selecting suitable future tack coat application options.
        4,000원