검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 59

        21.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.
        4,000원
        22.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        GdBa2Cu3O7-y(Gd123) powders were synthesized by the solid-state reaction method using Gd2O3 (99.9% purity), BaCO3 (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with Gd2O3 addition (Gd1.5Ba2Cu3O7-y(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature (Tc,onset) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The Tc,onset of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density (Jc) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/cm2. The addition of 0.25 mole Gd2O3 and 1 wt.% CeO2 to Gd123 enhanced the Tc, Jc and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The Tc of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The Jcs at 77 K (0 T and 2 T) were 3.2×104 A/cm2 and 2.5×104 A/cm2, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).
        4,000원
        25.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Large single grain Gd1.5Ba2Cu3O7-y (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an NdBa2Cu3O7-y seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature (Tc) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities (Jcs) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 A/cm2 and 10,000-23,000 A/cm2, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many Gd2BaCuO5 (Gd211) particles of a few μm in size, which are flux pinning sites of Gd123, were trapped within the GdBa2Cu3O7-y (Gd123) grain; unreacted Ba3Cu5O8 liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.
        4,000원
        26.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Red phosphors of Gd1-xAl3(BO3)4:Eux3+ were synthesized by using the solid-state reaction method. The phasestructure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electronmicroscopy (FE-SEM), respectively. The optical properties of GdAl3(BO3)4:Eu3+ phosphors with concentrations of Eu3+ ions of0, 0.05, 0.10, 0.15, and 0.20mol were investigated at room temperature. The crystals were hexagonal with a rhombohedrallattice. The excitation spectra of all the phosphors, irrespective of the Eu3+ concentrations, were composed of a broad bandcentered at 265nm and a narrow band having peak at 274nm. As for the emission spectra, the peak wavelength was 613nmunder a 274nm ultraviolet excitation. The intensity ratio of the red emission transition (5D0→7F2) to orange (5D0→7F1) showsthat the Eu3+ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of Eu3+ions for preparing GdAl3(BO3)4:Eu3+ phosphors was found to be 0.15mol.
        4,000원
        28.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Red-orange phosphors Gd1-xPO4:Eux3+ (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing theconcentration of Eu3+ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical propertiesof the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), andphotoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystalstructures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size ofgrains increases and then decreases as the concentration of Eu3+ ionincreases. As for the PL properties, all of the ceramicphosphors, irrespective of Eu3+ ion concentration, had orange and red emissions peaks at 594nm and 613nm, respectively. Themaximum excitation and emission spectra were observed at 0.10mol of Eu3+ ion concentration, just like the grain size. Anorange color stronger than the red means that 5D0→7F1 (magnetic dipole transition) is dominant over the 5D0→7F2 (electricdipole transition), and Eu3+ is located at the center of the inversion symmetry. These properties contrasted with those of a redphosphor Y1-xPO4:Eux3+, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host materialhas a major effect on the resulting color.
        4,000원
        36.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        doped (GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process
        4,000원
        37.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanochemical process were employed to prepare the red phosphors (Y,Gd). The main factors affecting particle size, particle distribution, and luminescent properties of the product were investigated in details. Particles sized around 200-600 nm are formed after intensive milling. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum. Results revealed that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by mechanochemical process
        4,000원
        39.
        2006.09 구독 인증기관·개인회원 무료
        Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. and and bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).
        1 2 3