검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 133

        21.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        초록 close In this study, the structural analyses were carried out with the old and new wheel models installed at the automotive tires. The stress and deformation at the middle circumference of wheel were seen to be greatest at two models. Also, the stress and deformation were smallest at the edge of wheel. The maximum deformation of the old model B is about five times larger than that of the new model A. The maximum equivalent stress of the old model B can be seen to be twice as large as the new model A. Also, it can be seen that the new model A is more stable than the old model B in terms of strength. It can be seen that the deformation energy of the old model B is 19 times larger than that of the new model A. And it is thought that the new model A is much more durable than the old model B in terms of impact. By utilizing this study result, the stress and deformation are investigated without the strength test of wheel installed at the automotive tire, and the durability can be seen.
        4,000원
        24.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박 및 해양구조물에서 사용하고 있는 고강도 알루미늄 합금들은 스틸과 비교해서 많은 이점을 가지고 있다. 최근 고강도 알루미늄 합금들은 육상 및 해양에 폭넓게 사용되고 있으며, 특히, 특수목적 선박의 선체 외판구조에 많이 이용되고 있고, 교량 구조물에 사용되는 상자 구조물, 그리고 고정식 해양플랫폼의 상부구조에서 소비율이 증가하고 있다. 알루미늄 재료는 스틸보다 1/3의 중량 구성비를 통하여, 구성 중량을 줄이게 하여 연비 절감을 가능하게 한다. 일반적인 강구조물의 응력-변형률 관계와 비교하면, 용접가공에 따라 발생하는 열영향부의 존재로 인하여 상당히 다르게 나타난다. 왜냐하면, 강구조물과 비교하면 열전도율이 높아서, 열영향부(heat affected zone, HAZ)가 남아 있어 구조 강도 저하를 가져온다. 본 논문에서는 MIG(Metal inert gas) 용접 때문에 발생하는 열영향부를 고려하고, 종방향 압축 하중에 대한 알루미늄 보강판의 좌굴 및 최종강도 특성을 분석하였다. MIG 용접에 따른 열영향부를 고려한 경우, 좌굴 및 최종강도 모두 감소하며, 열영향부의 범위가 15 mm부터 항복 이후 에너지 소실률이 크게 나타나며, 25 mm 이상부터는 그 차이가 크지 않다. 따라서, 알루미늄 합금재료를 적용한 보강판의 구조 거동을 파악하기 위해서는 열영향부 영향에 대한 검토 및 분석이 중요하다.
        4,000원
        26.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The effect of mobilization on lumbar back pain has been fully described in several clinical aspects, but evidence for muscle strength would be still less clear. Objective: To assess the effect of lumbar mobilization on lower limb strength in healthy individuals. Methods and Analysis: Healthy people aged 18-65 will be included regardless of race or sex. Original peer-reviewed primary reporting randomized controlled trials (RCTs) will be included. Electronic databases, such as MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, Pedro, CINAHL, ClinicalTrials.gov will be searched from inception until July 30. Only studies published in English will be included in this review. Two reviewers will complete the screening for eligibility independently, and the other two reviewers will also complete the risks of data extraction and bias assessment independently. Lower Limb strength will be assessed as primary outcome, and particular intervention or participant characteristics will be assessed as the secondary outcomes. Meta-analysis will be conducted using Review Manager 5.3.3, and evidence level will be assessed using the method for Grading of Recommendations Assessment, Development and Evaluation. Outcomes will be presented as the weighted mean difference or standardized mean difference with 95% CI. If I2 ≤ 50%, P>.1, the fixed effect model will be used, otherwise, random-effects model will be used. Ethics and dissemination: This review might not be necessary ethical approval because it does not require individual patient’s data; these findings will be published in conference presentations or peer-reviewed journal articles. PROSPERO registration number: CRD42020150144.
        4,000원
        27.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the structural analysis was carried out according to the structure of lumber support. For the optimal design of the automotive lumber support, It was examined which one was most stable among three models A, B, and C. As the result of structural analysis, all three models showed the greatest deformations at the wire portion of the lumber support, and model A showed less equivalent stress and deformation compared with models B and C. As model A showed the lowest equivalent stress and deformation among all models, model A was shown to be the model with the excellent strength. This analysis established the stable design by comparing models A, B and C. Also, It is thought that this study result can be highly utilized at the seat design of real automobile.
        4,000원
        31.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국내에서는 고층 벽식 아파트 건설 시, 하부 주차공간과 공용공간 확보를 위하여 RC 전이슬래브 시스템을 사용하는 경우가 증가하고 있다. 하지만 두께가 얇은 RC 무량판 슬래브를 위해 개발된 설계방법 및 구조성능평가 방법을 두께가 매우 두꺼운 전이슬래브 구조설계에 그대로 사용하고 있다는 문제점이 있다. 따라서 합리적인 전이슬래브의 구조설계를 위해서는 RC 전이슬래브 시스템의 2면 전단거동 양상에 대한 명확한 분석이 필요하다. 이에 따라 본 연구에서는 전이슬래브의 두께, 콘크리트 강도, 전단경간비, 철근비 등 다양한 설계변수에 따라 비선형 FEM을 이용하여 전이슬래브의 2면 전단거동을 분석 하였다. 또한 비선형 FEM 해석결과와 기존의 2면 전단강도 평가식으로 예측한 전단강도를 비교분석하여 기존 평가식의 전이슬래브 2면 전단강도 평가 유효성을 검토하였다.
        4,800원
        32.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The object of this study is to select appropriate inorganic materials, and find the best mixing formula to secure fast curing time and enough initial strength, and then to evaluate the durability of the asphalt mixtures according to the degree of addition of the compound manufactured by the determined blending ratio. METHODS : The breaking time and reactivity between seven kinds of inorganic minerals, and the selected recycled aggregate and emulsified asphalt were compared to determine the best initial curing strength for the mixtures. Then, three inorganic materials were chosen as the materials that provide good breaking time and reactivity, and the best mixing formula for the three materials was determined. The chemical composition of the compound manufactured using the mixing formula was analyzed by energy dispersive x-ray system method. Finally, indirect tensile strength (ITS) test was performed (for two days) at room temperature to determine the proper amount of additives that will provide the best initial strength. RESULTS: From the results of the reactivity test, the best mixing formula (A:C:G = 60:30:10) for the three selected inorganic materials with short braking time and high reactivity was determined. The four types of cold reclaimed asphalt mixtures for ITS testing were manufactured by adding the inorganic material compounds at 0%, 3%, 5%, and 7%, and the ITS values were measured after two curing days. The ITS values at 5% and 7% were 0.308 MPa and 0.415 MPa, respectively. The results of quality control tests (Marshall stability, porosity, flow value, etc.) at 5% and 7% satisfied the specification criterion for the cold recycled asphalt mixtures. CONCLUSIONS : The selected inorganic materials (A, C, and G) and the best mixing formula (A:C:G = 60:30:10) accelerated the reaction with emulsified asphalt and shortened the curing time. Depending on the inorganic material used, the breaking time and reactivity can be directly related or unrelated. This is because of the chemical compositions of recycled aggregates, infiltrated foreign matter, and chemical reactions between the inorganic materials and other materials. Therefore, it is important to select the proper materials and the best mixing formula when evaluating the characteristics of the practically used materials such as recycled aggregates, inorganic materials, and emulsified asphalt.
        4,000원
        35.
        2018.05 구독 인증기관·개인회원 무료
        Generally, asphalt binder experiences short-term aging during mixing and constructing processes in high temperature environments and long-term aging during the service life after opening the road. Binder aging inside asphalt mixtures incurs changes in strength of asphalt paved roads, which then changes physical properties of the mixture such as cracks and rutting resistance. This study aims to measure bond strength of aging asphalt binder using asphalt bond strength (ABS) test that can measure a bonding force of asphalt binder and aggregate surface using Pneumatic Adhesion Tensile Testing Instrument (PATTI) used previously in the paint industry as a testing method specified in AASHTO TP-91.
        36.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Impact damage tolerance is an important design requirement for composite structures. In this study, the effect of post impact damage and hole size of the composite sandwich skin / sandwich with core specimen on compressive strength of the laminate was analyzed. Three specimen tests were performed in this research. Two tests were carried out on pure bending test specimens subjected to impact damage to the skin and specimen with a hole in one of its skin as a damage. Through this test, we compared the reduction of compressive strength due to the size of skin damage and the size of the hole. Also, core-free specimen with an open hole under uniaxial loading were tested to produce reference data for comparison with the series tested earlier. As results of the tests, the sandwich beams with damage size and open hole are almost identical, and we concluded that the prediction of compressive strength reduction after impact of the sandwich skin structure can be predicted using an analytical model assuming skin open hole as impact inputs.
        4,000원
        37.
        2017.04 구독 인증기관 무료, 개인회원 유료
        All structures can not be perfect due to geometric or material initial imperfections. Initial imperfections are an important factor in determining the buckling mode and are known to be important factors in evaluating the actual buckling strength. The DNV-RP-C202 design standard limits the longitudinal stiffener spacing. However, the criteria for the stiffener spacing presented in DNV-RP-C202 is a guideline derived from the curved panel theory of perfect cross-sectional shape without initial imperfections. In this study, considering geometric initial imperfections, the transition point of stiffener spacing where longitudinal stiffeners affect the buckling strength of reinforced steel wind turbine tower is analyzed using finite element analysis program. The results of finite element analysis compared with theoretical results based on the perfect shape. As a result, a more reasonable stiffener spacing considering the initial imperfections was suggested.
        3,000원
        38.
        2016.04 구독 인증기관·개인회원 무료
        The initial production scale of wind tower is very few. But recently, the production scale of wind tower structure has increased gradually because it maximizes the efficiency in green energy. Many researchers are studying the wind tower, but there is no study about the difference of allowable buckling stress of the wind tower with and without opening. Guideline of codes and standards are very limited when designing a wind tower with an opening. It is also rarely that a study considers the design of the wind tower to be a tubular shell with or without an opening. ABAQUS, a general purpose finite element program, which provides safety evaluation and economical standards for the design and behavior of the wind tower considering the effect of opening was used in the study. Finally, results from this study can serve as reference for structural engineers, manufacturers and further studies of wind turbine when designing a tubular shell wind tower with an opening.
        39.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, we analyzed the compressive strength characteristics of lean base concrete in relation to changes in the outdoor temperature after analyzing the cold and hot weather temperature standards and calculated the minimum and maximum temperatures when pouring concrete. We examined the rate of strength development of lean base concrete in relation to the temperature change and derived an appropriate analysis formula for FRC base structures by assigning the accumulated strength data and existing maturity formula. METHODS: We measured the strength changes at three curing temperatures (5, 20, and 35℃) by curing the concrete in a temperature range that covered the lowest temperature of the cold period, 5℃, to the highest temperature of the hot period, 35℃. We assigned the general lean concrete and FRC as test variables. A strength test was planned to measure the strength after 3, 5, 7, 14, and 28 days. RESULTS : According to the results of compressive strength tests of plain concrete and FRC in relation to curing temperature, the plain concrete had a compressive strength greater than 5 MPa at all curing temperatures on day 5 and satisfied the lean concrete standard. In the case of FRC, because the initial strength was substantially reduced as a result of a 30% substitution of fly ash, it did not satisfy the strength standard of 5 MPa when it was cured at 5℃ on day 7. In addition, because the fly ash in the FRC caused a Pozzolanic reaction with the progress into late age, the amount of strength development increased. In the case of a curing temperature of 20℃, the FRC strength was about 66% on day 3 compared with the plain concrete, but it is increased to about 77% on day 28. In the case of a curing temperature of 35℃, the FRC strength development rate was about 63% on day 3 compared with the plain concrete, but it increased to about 88% on day 28. CONCLUSIONS: We derived a strength analysis formula using the maturity temperatures with all the strength data and presented the point in time when it reached the base concrete standard, which was 5 MPa for each air temperature. We believe that our findings could be utilized as a reference in the construction of base concrete for a site during a cold or hot weather period.
        4,000원
        40.
        2015.04 구독 인증기관·개인회원 무료
        The clamping of torque shear high strength bolt is induced when the pin-tail is broken. Sometimes the clamping forces on slip critical connections do not meet the required tension due to torque coefficient dependent on conditions such as outdoor temperature, moisture and dust. From this study, the clamping forces of torque shear bolts at indoor conditions were compared with actual data investigated from 24 construction sites last five years. Similarly to foreign literature results, torque shear bolts showed that torque coefficients were fluctuated greatly by temperature conditions. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 Nㆍm. Instead, the range of torque coefficient at site conditions was analyzed from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient subjected temperature can be traced via statistic regressive analysis. In case of indoor conditions, it was showed that the variable of torque coefficient was 0.13% per 1℃, while the variable at actual site conditions reached 2.73% per 1℃.
        1 2 3 4 5