검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 74

        23.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coke aggregates and carbon artifacts were produced to investigate the interactions of coke and pitch during the kneading process. In addition, the kneading ratio of the coke and binder pitch for the coke aggregates was controlled to identify the formation of voids and pores during carbonization at 900°C. Experiments and thermogravimetric analysis revealed that carbon yields were improved over the theoretical yield calculated by the weight loss of the coke and binder pitch; the improvement was due to the binding interactions between the coke particles and binder pitch by the kneading process. The true, apparent, and bulk densities fluctuated according to the kneading ratio. This study confirmed that an excessive or insufficient kneading ratio decreases the density with degradation of the packing characteristics. The porosity analysis indicated that formation of voids and pores by the binder pitch increased the porosity after carbonization. Image analysis confirmed that the kneading ratio affected the formation of the coke domains and the voids and pores, which revealed the relations among the carbon yields, density, and porosity.
        4,000원
        24.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study was to evaluate the field applicability of chip seals using recycled aggregates by comparing performance between natural aggregates and recycled aggregates for chip seals. METHODS : In order to check the performance of chip seals using recycled and natural aggregates, Bitumen Bond Strength (BBS) test, Vialit and bleeding tests were carried out. Cationic emulsions (RS(C)-2 and latex modified RS(C)-2L) were used in the tests. Granite aggregates were used as the natural aggregate and recycled aggregate from road wastes were used as the recycled aggregate. The aggregate was used with uniform gradation between 10 mm and 4.75 mm to clearly compare the performance difference between natural and recycled aggregates. RESULTS : Test results showed that the aggregate retention was low for both natural and recycled aggregates when applying RS(C)-2 (unmodified emulsion), but there was almost no difference between them when applying RS(C)-2L and RS(C)-2L-1 (modified emulsion) in the Vialit test results. In the bleeding tests, there was no bleeding for both natural and recycled aggregates when applying RS(C)-2 and RS(C)-2L. CONCLUSIONS: It was possible to apply chip seals using recycled aggregates in the field because the chip seals with recycled aggregates and RS(C)-2L (modified emulsion) showed aggregate retention similar to that of natural aggregates, and there was no bleeding.
        4,000원
        25.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물의 내풍성능을 개선하기 위하여 지난 수 십 년간 진동제어장치가 사용되어 왔다. 진동제어장치는 구조물의 등가감쇠비를 증가시킴으로써 진동에 대한 저항성을 증가시키는 효율적인 방안이지만, 설치와 운영에 많은 비용이 요구되고 있다. 진동제어장치와 등등한 감쇠효과를 가지면서 영구적으로 구조물 자체의 감쇠비를 증가시키기 위한 고감쇠 물질에 대한 연구가 증가하고 있다. 본 연구에서는 굵은 골재에 폴리우레탄이 코팅된 고감쇠 콘크리트 재료의 감쇠성능을 평가하기 위한 실험과 분석이 이루어졌다. 고감쇠 물질로 제조된 단순보에 대한 자유진동실험을 수행하여 각 모드별 특성을 파악하였으며 특히 감쇠비를 추정하여 감쇠물질에 의한 감쇠증가량을 정량적으로 평가하였다. 비교평가를 위하여 기존 콘크리트 재료로 제조된 보에 대한 실험 또한 병행하여 수행되었다. 모드 분석에 의한 감쇠비 추정결과 고감쇠 보는 각 모드별 약 10%의 감쇠비를 가지는 것으로 나타났으며, 이는 일반 보의 감쇠비 1%에 비 하여 매우 높은 감쇠증가량을 보이고 있다. 이러한 결과로부터 폴리우레탄 코팅 고감쇠 재료를 이용하여 구조물의 감쇠성능확보가 가능할 것으로 판단된다.
        4,000원
        26.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 일반 콘크리트의 감쇠비를 높이기 위한 재료 및 방법을 제안하고, 제안된 재료 및 방법으로 제작한 시험체의 감쇠비를 측정하여 폴리우레탄 혼입량의 영향을 조사하는 것이다. 이를 위하여 폴리우레탄으로 골재를 코팅한 후 공극을 시멘트 페이스트로 채우는 방법을 개발하였고, 폴리우레탄의 함유량에 따라 시험체를 제작하고 충격가진시험을 실시하였다. 시험체 제작을 통해 골재 무게대비 폴리우레탄의 양이 15%를 넘는 경우 폴리우레탄 층이 형상되는 것을 확인하였다. 실험결과 이 연구에서 제안한 재료 및 방법으로 제작한 시험체는 일반 콘크리트에 비하여 8.7배 높은 감쇠비를 나타내었으며, 폴리우레탄 층이 골재의 크기보다 두꺼운 경우 감쇠비가 20.08%까지 나타났다. 골재 무게대비 폴리우레탄의 양이 10%에서 20% 범위에서 사용되는 경우 강성은 일반 콘크리트 대비 51%에서 65% 감소하는 것으로 나타났다.
        4,000원
        27.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, redevelopment and reconstruction projects have caused problems such as depletion of natural aggregates, and the use of recycled aggregate is being reevaluated as an optimal alternative. Therefore, in this study, the mechanical and deformation characteristics of Environment-Friendly Recycled Coarse Aggregate (here after, EFRCA) concrete reinforced with para-aramid fiber with high strength and high elasticity are examined. The experimental main parameters were EFRCA replacement ratio (0, 30 and 50%) and para-aramid fiber volume fraction (0, 0.75 and 1.0%). Experimental results show that the EFRCA concrete has lower compressive strength than plain concrete. However, compared with the natural aggregate, the EFRCA concrete, which exhibited low material properties, showed almost the same performance as plain concrete, such as increased flexural strength and improved ductility by incorporating para-aramid fibers. Through the experiment, it is considered that the most suitable para-aramid volume fraction is 0.75%. Based on these results, the experimental results related to the performance degradation of EFRCA concrete containing para-aramid fibers are secured and basic data for determining the reuse possibility and reinforcement method of structures are presented.
        4,000원
        28.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was performed to determine a systematic approach for measuring the coefficient of thermal expansion (COTE) of concrete specimens. This approach includes the initial calibration of measurement equipment. Test variables include coarse aggregate types such as natural aggregate, job-site produced recycled concrete aggregate, and recycled aggregate processed from an intermediate waste treatment company. METHODS: First, two cylindrical SUS-304 specimens with a known COTE value of 17.3×10-6m/m/℃. were used as reference specimens for the calibration of each measurement system. The well-known AASHTO TP-60 COTE apparatus for concrete measurement was utilized in this study. Four different measurement apparatuses were used with each LVDT installed and a calibration value was determined using each measurement apparatus. RESULTS : In the initial experimental stage, calibration values for each measurement apparatus were assumed to be almost identical. However, using the SUS-304 samples as a reference, the calibration values for the four different measurement apparatuses were found to range from 3.49 to 8.86 ×10-6m/m/℃. Using different adjusted values for each measurement apparatuses, COTE values for the three different concrete specimens were obtained. The COTE value of concrete made with natural coarse aggregate was 9.91×10-6m/m/℃, that of job-site produced recycled coarse aggregate was 10.45×10-6m/m/℃, and that of recycled aggregate processed from the intermediate waste treatment company was 10.82×10-6m/m/℃. CONCLUSIONS: We observed that the COTE value of concrete made from recycled concrete aggregates (RCA) was higher than that of concrete made from natural coarse aggregate. This difference is due to the fact that the total volumetric mortar proportion in the RCA mix is higher than that in the concrete mix made with natural coarse aggregate.
        4,000원
        29.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, wasted vinyl aggregate, which possesses better thermal properties than natural aggregate, was used in cement concrete mixture to develop more economical concrete with thermal insulation and freeze prevention effects. METHODS : Slump and air content of the fresh concrete, which substituted its 0%, 5%, and 10% of coarse aggregate with wasted vinyl aggregate, were measured. Compressive strength, Poisson’s ratio, elastic modulus, and splitting tensile strength of hardened concrete were measured by laboratory tests. Thermal properties of concrete such as coefficient of thermal expansion, thermal conductivity, and specific heat were also measured according to replacement ratio of wasted vinyl aggregate. Finally, the thermal insulation and freeze prevention effectiveness of the concrete mixed with wasted vinyl aggregate was confirmed through finite element analysis of road pavement crossing above concrete box culvert made from wasted vinyl aggregate. RESULTS: Even though the physical properties of wasted-vinyl-aggregate concrete such as compressive strength, Poisson°Øs ratio, elastic modulus, and splitting tensile strength were inferior to those of ordinary concrete, they met requirements for structural concrete. The thermal properties of concrete were improved by wasted vinyl aggregate because it decreased thermal conductivity and increased specific heat of the concrete. According to the result of finite element analysis, temperature variation in pavement subgrade was mitigated by box culvert made from wasted-vinyl-aggregate concrete. CONCLUSIONS: Through the laboratory test and finite element analysis of this study, it was concluded that the concrete structures made from wasted vinyl aggregate showed thermal insulation and freeze prevention effects.
        4,000원
        30.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 정제되지 않은 ZnO 및 TiO₂나노입자를 M4배지에 노출시켜 두 나노입자가 어느 정도 크기의 응집체로 변화되는지를 살펴보고 또한 두 나노입자가 수생태계 생물종인 Daphnia magna에 어떠한 영향을 초래하는지 유영저해 및 폐사율을 통해 살펴보았다. ZnO 및 TiO₂나노입자의 분말상태 크기는 각각 20 nm와 40 nm였지만, M4배지에서는 1333 nm와 1628 nm로 약 40~70배의 크기로 응집되었다. 유영저해의 경우 ZnO와 TiO₂나노입자 모두 시간 및 농도가 높아질수록 D.magna가 유영하는데 영향을 미친 것으로 나타났으며, 특히 ZnO나노입자가 TiO₂나노입자에 비해 더 큰 영향을 미치는 것으로 나타났다. 폐사율의 경우 ZnO나노입자에서는 시간 및 농도가 높아질수록 폐사되는 비율이 높았으며, TiO₂나노입자에서는 72시간이 경과된 시점의 10 ppm 이상의 농도에서 폐사하는 것으로 관찰되었다. 이는 나노입자가 해양에 유입됨으로 인해 원래의 크기에 비해 응집되어 증가되어진다는 것을 알 수 있으며, 또한 그 응집체로 인해 수생태계 생물에 영향을 주는 것으로 나타났다.
        4,000원
        31.
        2014.09 구독 인증기관·개인회원 무료
        The bicycle road network in South Korea has increased from 4908 to 18281km between 2006 and 2013. Pervious concrete, as a typical bicycle pavement, allows rainwater to seep through the surface instead of running off. However, due to the low binder content and low water-cement ratio of pervious concrete, it is susceptible to durability problems such ravelling due to abrasion and freeze-thaw failure. This research aims to develop a pervious concrete mix which will obtain sufficient permeability, strength and durability. In this research, four types of mixtures were investigated with varying fine aggregate and admixture content. The physico-mechanical properties of the pervious concrete were investigated including strength, void ratio, permeability, abrasion and freezing-thawing durability of the concrete mixtures. Furthermore, time delay for placement was investigated. Results imply that the fine aggregate content increased the compressive strength of the pervious concrete while its permeability performance is reduced but within the allowable limit. The mixture with fine aggregate has higher freezing-thawing durability and abrasion resistance. The preliminary results of the effects of time delay to the performance of concrete show a deterioration in the compaction capability of the pervious concrete.
        32.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS: In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS: It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.
        4,000원
        33.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In Korea, most designs of pavement had been mainly performed by considering CBR of granular materials before KPRP(Korea Pavement Research Program) and 86 AASHTO design method were introduced. Since then, the trend of the pavement designs gradually have moved to using mechanical characteristics throughout the resilient modulus based on the test results up to recently. In this study, we should like to research the mechanical characteristics of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. METHODS : The kinds of materials were tested; coarse grained subbase materials, refining aggregates base materials and recycled aggregates. RESULTS : The present study aims to figure out the resilient modulus of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. CONCLUSIONS : The test results revealed that the engineering properties of the recycled aggregates were more excellent than the those of others.
        4,300원
        34.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, various laboratory tests were performed to investigate basic physical properties of the asphalt concrete which uses wasted vinyl aggregates. METHODS : The thermal conductivity, ultrasonic velocity, Marshall stability, flow, indirect tensile strength were measured according to binder content and wasted vinyl aggregate content. An experimental construction was performed to verify construct ability of the asphalt pavement using the wasted vinyl aggregates. RESULTS : The thermal conductivity and ultrasonic velocity decreased showing insulation effect by mixing more wasted vinyl aggregate, whereas stability and flow increased. The void ratio shows similar value regardless of the mixing ratio. The highest indirect tensile strength was measured at 2.5% of wasted vinyl aggregate content. The construct ability was verified by observing the process of mixing, placing, and compaction and the state of the pavement surface. CONCLUSIONS : The basic properties and construct ability of the asphalt concrete using the wasted vinyl aggregates were verified. The temperature according to pavement depth will be measured to verify the insulation effect of the wasted vinyl aggregates. In addition, amount of snowfall, snowmelt area, and ice adhesion strength will be analyzed quantitively.
        4,000원
        35.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.
        4,000원
        36.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to compare the alkali-silica reactivity for mortar bar and concrete prism specimens using crushed aggregates of 5 types in Korea. And the alkali-silica reactivity for those aggregates are measured by chemical test method. METHODS: The alkali-silica reactivity for those aggregates was measured by chemical test method of KS F 2545, mortar-bar test of KS F 2546, accelerated mortar-bar test method of ASTM C 1260 and concrete prism test method of ASTM C 1293, relatively. RESULTS: The alkali-silica reactivity for those aggregates was verified by chemical test of KS F 2546 and accelerated mortar-bar test of ASTM C 1260. However, it was not by mortar-bar test of KS F 2546 and concrete prism test of ASTM C 1293. CONCLUSIONS: The above results showed that relationship among the four test methods were very low. The results from 3 types of test methods using cement-aggregate combinations appeared to be different. Because the environmental conditions of test methods for measuring the alkali-silica reactivity such as equivalent alkali content(external source), humidity, temperature, and times were different though the aggregates were same. Moreover, alkali-silica reactivity showed the biggest impact when alkalis were supplied form outside and exposed to environmental conditions. The accelerated mortar-bar test method seems to be most appropriate test method for concrete structures exposed to alkali environment.
        4,000원
        1 2 3 4