검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        23.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis and consolidation of titanium silicide by electro-discharge-sintering has been investigated. As-received Ti powder was in flaky shape and the mean particle size was , whereas the mean particle size of the pre-milled Si powder with angular shape was . Single pulse of 2.5 to 5.0 kJ/0.34g-elemental Ti and pre-milled Si powder mixture with the composition of Si was applied using capacitor. The solid with phase has been successfully fabricated by the discharge with the input energy more than 2.5kJ in less than Hv values were found to be higher than . The formation of occurred through a fast solid state diffusion reaction.
        4,000원
        29.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiNi bodies were produced from (Ti+Ni) powder mixture by spark-plasma sintering procerg. The sintering behavior was investigated through the measurement of change in density, densification rate, phase analysis and microstructure. Irrespective of heating rate, sintered bodies with above 97% relative density could be obtained. TiNi with B2 structure was confirmed as the major phase and , unreacted Ti, Ni as the second phase. Increase in heating rate suppressed a formation of intermediate phase during sintering process. Increase in holding time at sintering temperature led to a compositional homogenization.
        4,000원
        30.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80 with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85 at the heating rate of 1/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120 for 1 h with the heating rate of 1/min.
        4,000원
        37.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at for 5 min under torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.
        4,000원
        40.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Milling media of steel and partially stabilized zirconia(PSZ) were used to produce Si by mechanical alloying(MA) of Mo-25.0at%Si elemental powder mixture. The effect of milling medium materials on MA of the powder mixture have been investigated by XRD and DTA. The reaction rate and the end-product noticeably depended upon the milling medium material. The formation of Si and phases by PSZ ball-milling took place after 15 hr of MA and was characterized by a slow reaction rate as Mo, Si, and Si coexisted for a long period of milling time. The formation of a new phase by steel ball-milling, however, did not take Place even after 96 hr of MA. DTA and annealing results showed that and Si were formed after heating the ball-milled powder specimens to different temperatures. At low temperatures, Mo and Si were transformed into . At high temperatures, the formation of Si can be partially attributed to the reaction, 7Mo+Si+-.4Si . The formation of Si and Mo5Si3 phases by mechanical alloying of the powder mixture and the relevant reaction rate appeared to depend upon the milling medium material as well as the thermodynamic properties of the end-products.
        4,000원
        1 2 3