검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 174

        41.
        2018.05 서비스 종료(열람 제한)
        HFC-134a는 냉매, 발포제 및 분사제 용도로 사용되며 국내에서는 자동차 에어컨 냉매로 주로 이용되고 있다. HFC-134a는 비이산화탄소(Non-CO2) 온실가스 중 하나로 GWP(global warming potentail, 온난화지수)가 4,300으로 매우 높아 HFC-134a 폐냉매 가스의 적정처리가 요구된다. HFC-134a 처리기술로는 직접 연소법(LNG 연소)과 Plasma 파괴법이 있으며 직접 연소법과 Plasma 파괴법 모두 초기 투자비용이 높고 높은 에너지(온도)가 필요하며, 동시에 처리 과정에서 발생되는 HF로 인한 장치 부식 등의 취약성을 지닌다. 특히 직접 연소법의 경우 분해를 위해 다량의 화석연료가 필요하여 분해 후 배출되는 온실가스 발생량이 높고, Plasma 파괴법의 경우 처리 가스 용량 증가 시 반응기의 크기가 증가함에 따라 Plasma의 밀도가 감소하여 파괴능력이 감소하는 문제점이 있다. 촉매분해법(열분해 및 가수분해)은 직접 연소법과 Plasma 파괴법과 비교하여 낮은 온도에서도 높은 분해효율을 얻을 수 있는 장점이 있으며, 분해로 형성되는 HF를 촉매로 고정할 수 있으나, 주기적인 촉매의 교체와 촉매의 공급단가에 의해 경제성이 크게 의존되는 문제점을 지니고 있다. 그러나 타 공법과 비교하여 매우 낮은 온도에서 운전되기 때문에 연료사용량 및 소비전력을 줄일 수 있는 기술로 평가받고 있다. 촉매열분해 기술은 반응조건(온도, 촉매량 및 공간속도 등)뿐만 아니라 촉매의 성능에 따라 분해효율에 차이를 보이므로, HFC-134a 분해 성능이 우수한 것으로 알려진 Al2O3에 Ni, Fe과 같은 금속을 담지하여 성능을 개선시키는 연구가 진행되고 있다. 본 연구는 촉매열분해 기술을 활용하여 HFC-134a 분해 특성을 파악하고 Ni, Fe, Cr 및 Co를 담지 특성에 따른 분해효율을 평가하고자 한다.
        42.
        2018.05 서비스 종료(열람 제한)
        화석연료는 가격의 변동이 심하고 그 매장량이 한정되어 있고 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 전 세계적으로 화석연료의 고갈과 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 지속가능한 청정 에너지자원에 대한 필요성이 대두되고 있으며, 관련된 연구개발이 활발히 진행 중이다. 탄소 중립적 친환경에너지인 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 현재 국내 폐목재 발생량은 지속적으로 증가하여 처리 및 활용방안이 필요한 실정이다. 이에 본 연구에서는 폐목재를 활용하여 생산 된 급속열분해 오일을 가스화하여 고품질 합성가스를 생산함으로써 기존의 바이오매스 직접 가스화의 단점을 극복하고자 하였다. 바이오매스를 이용한 가스화 공정은 원료인 바이오매스의 낮은 에너지 밀도로 인하여 가스화 플랜트와 바이오매스 원산지간 거리에 따라 경제성이 감소한다. 이러한 경제성 문제를 극복하기 위한 방안으로 바이오매스 원산지에서 바이오매스를 급속열분해 하여 생산된 고 에너지 밀도의 열분해오일을 가스화 플랜트로 이송하여 에너지를 생산하는 방안이 대두되고 있다. 따라서 본 연구에서는 폐목재를 원료로하여 최적조건에서 생산 된 급속열분해 오일을 원통형 가스화기(0.1 m diameter × 1.4 m height)를 사용하여 E/R ratio, 반응온도 등을 운전변수로 하여 가스화 실험을 수행하였다. 생산되는 합성가스의 조성을 Micro GC를 이용하여 분석하여 고품질 합성가스를 생산할 수 있는 최적 조건에 대한 연구를 진행하였다.
        43.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        The fast pyrolysis of biomass (larch) in a circulating fluidized bed pyrolyzer was performed and the physico-chemical characteristics of biocrude-oil was investigated. Standard sand was used for fluidizing material and various reaction temperatures from 400℃ to 550℃ was applied. Wood (larch) sample was examined thorough proximate analysis and thermogravimetric analysis (TGA). From the results of the sample test, thermal decomposition characteristics of wood (larch) was investigated. Various analyses were carried out to determine the physicochemical properties of biocrude-oil such as Higher heating value (HHV), water content, viscosity, ash content and microscopic anaysis. The maximum biocrude-oil yield was 49.9wt.% at 550℃. At this temperature, HHV and water content were 4562.0 kcal/kg and 13.8wt.%, respectively. From the study results, wood (larch) has potential as an alternative energy source.
        44.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        To produce palm kernel shell (PKS) biocrude oil, a bubbling fluidized bed pyrolyzer was used with different sample sizes and reaction temperatures. The PKS sample sizes used were 0.1 ~ 0.4 mm, 0.4 ~ 1.0 mm, and 1.0 ~ 2.0 mm and the reaction temperature were 465oC, 490oC, 530oC, 560oC, and 590oC. The yield of PKS biocrude oil increased with decreasing the sample size. The maximum yield of PKS biocrude oil was 47.31% at 560oC with a PKS sample size of 0.1 ~ 0.4 mm. In addition, the maximum energy yield of PKS biocrude oil was 45.05% at 560oC and size 0.1 ~ 0.4 mm. Among the characteristics of PKS biocrude oil, the high heating values are from 15.98 MJ/Kg to 20.29 MJ/Kg, the moisture content is from 20.14wt.% to 31.57wt.%, and the viscosity ranges from 0.0117 N s/m2 to 0.0408 N s/m2. In addition, proximate analyses and elemental analysis of PKS biocrude oil were conducted.
        45.
        2017.11 서비스 종료(열람 제한)
        탄소기반의 유기화합물로 이루어져 있는 바이오매스(Biomass)는 차세대 에너지원으로서의 역할을 기대하고 있으며 풍부한 부존량과 탄소 중립적인 특징을 가지고 있다. 목질계 바이오매스의 구성성분 중 25~35%를 차지하고 있는 리그닌(Lignin)은 복잡하고 거대한 페놀축합물로 이루어져 있는 풍부한 천연 고분자이다. 본 연구에서는 리그닌을 에너지자원으로서 활용을 극대화하기 위하여 회전로상(Rotating bed) 열분해 공정을 구성하였고, 리그닌을 회전로상 열분해 공정에 적용하기 전에 고정층(Fixed bed) 열분해 실험을 실시하였다. 리그닌의 물리・화학적 특성, 열적특성을 분석하였고, 고정층 열분해 공정과 회전로상 열분해 공정을 적용하여 리그닌의 열분해 특성을 분석하였다. 리그닌은 휘발분(volatile matter) 62.9%와 고정탄소(fixed carbon) 32.6%가 주를 이루고 있었으며, 원소분석결과 탄소(C) 62.4%와 산소(O) 30.6%가 주를 이루고 있는 것을 알 수 있었다. 열중량분석(TGA) 결과 리그닌의 중량감소는 500℃의 온도범위 이후 반응이 종료됨을 확인 할 수 있었다. 회전로상 공정에서의 액상생성물은 약32.0%의 생산 수율을 보였으며, 고부가가치 성분인 monomeric phenolics 성분들이 주로 검출되었다. 발열량 측정 결과 약 7,000kcal/kg로 측정 되었고, 시판되고 있는 연료 및 연료보조제와 비교를 통해 연료로서의 수준을 나타내었다. 공정의 특성을 분석하기 위해 컴퓨터 프로그램 전산유체역학(CFD, Computational Fluid Dynamics) 상용 Sofrware인 FLUENT를 사용하였다. 위의 실험과 시뮬레이션을 통해 회전로상 열분해의 액상생성물 특성 분석과 공정의 일반화 가능성을 보고자 하였다.
        46.
        2017.11 서비스 종료(열람 제한)
        열분해와 가스화 기술은 유기성 폐자원 또는 바이오매스로부터 에너지를 회수할 수 있는 유용한 기술로 생산된 생성가스는 연소기, 가스터빈, 엔진 등의 화석 대체연료, 연료전지 연료, 메탄올과 탄화수소의 생산, 수소 및 합성천연가스 생산 원료 등 다양한 분야에 적용이 가능하다. 그러나 열분해 및 가스화 시 발생되는 가스에는 중질 탄화수소로 이루어진 타르를 포함하고 있다. 타르는 생성가스를 이용하는 후속공정에서 해결해야 할 다양한 문제를 일으키는 요인이다. 그 대표적인 예로 가스 터빈 및 내연기관에 사용하기 전에 압축 과정을 필요한데 이 과정 중 생성가스에 포함된 타르 성분은 응축되어 관로의 막힘이나 엔진 및 터빈 내부의 손상을 가져온다. 그러므로 타르의 제거는 열분해/가스화 공정에서 필요한 가스 처리기술이다. 타르의 촉매 크래킹과 개질에 의한 생성가스 전환과 같은 고온 청정가스 기술은 가스화 공정에서 타르문제를 해결하는 가장 좋은 방법으로 알려져 있다. 귀금속 촉매는 촉매 활성이 상당히 우수하나 가격이 비싸고 탄화물 참착(coke deposition)에 의한 탈활성화(deactivation)에 대하여 매우 민감한 특성을 가지고 있어 대체 방안으로 활성탄, 석탄 촤, 바이오매스 촤 등의 탄화물이 타르 크래킹이나 개질 촉매 또는 그 지지체 적용에 대한 연구를 수행하였다. 본 연구에서는 상용 활성탄을 마이크로웨이브 탄소 수용체로 하여 벤젠 전환 특성을 파악하기 위하여 크래킹 분해와 이산화탄소-수증기 혼합 또는 각각에 대한 개질 전환에 대하여 실험을 진행하였다. 또한, 탄소 수용체의 촉매 담체 특성을 파악하기 위해 활성탄에 니켈과 철을 함침 코팅한 후 건조하여 만들어진 탄소 수용체 촉매에 대한 타르전환과 생성가스 특성을 파악하였다. 벤젠 전환은 크래킹만 하였을 경우 99%로 가장 크고 이산화탄소만 공급된 경우 98.5% 그 다음이고 이어서 이산화탄소-수증기가 동시에 공급된 경우 95-97% 그리고 수증기만 공급된 경우 94%의 순으로 작은 값을 가졌다. 촉매 탄소 수용체의 벤젠 전환은 이산화탄소 개질의 경우 니켈과 철 촉매 모드 미세하게 증가되었으며 H2/CO비는 감소되었으나 발열량은 증가되었다. 반면 수증기 개질의 경우 두 촉매 모두 벤젠 전환율이 다소 감소되었으나 H2/CO비와 발열량이 증가되었다.
        47.
        2017.11 서비스 종료(열람 제한)
        최근 석유연료의 과다 사용으로 인한 지구온난화와 환경오염 등의 문제가 심각하게 대두되고 있다. 이에 따라 탄소 중립적이며 잠재량이 풍부한 바이오매스를 활용하는 바이오에너지 생산기술 연구가 친환경 대체에너지로서 주목받고 있다. 특히 우리나라의 경우 목재 수요의 증가로 인해 폐목재는 꾸준히 발생하고 있으나 신재생에너지 중 바이오매스 에너지는 약 10%일정도로 생산 측면에서의 활용은 상당히 빈약한 상황이다. 따라서 본 연구는 이미 유렵과 북미 지역을 중심으로 활발히 연구 및 상용화가 진행되고 있는 열화학적 변환 공정 중 하나인 급속열분해 공정을 채택하였다. 급속열분해 공정은 무산소 조건에서 400~600℃의 반응온도로 간접 가열하여 바이오매스를 열적으로 분해하는 공정으로서, 2초 내외의 짧은 체류시간으로 에너지밀도가 높은 액상 생성물인 바이오오일의 수율을 극대화할 수 있다는 장점을 지니고 있다. 본 실험에 사용된 원뿔형 분사층 반응기는 일반적으로 이용되고 있는 기포 유동층에 비하여 바이오매스 입자와 유동매질 간 열 및 물질전달 속도가 높고, 비교적 큰 시료 입자도 열분해 가능하기 때문에 입자 분쇄에 소요되는 에너지를 절감할 수 있으며, 내부에 분산판이 없어 압력강하량이 적은 장점을 가진다. 본 연구에서는 바이오매스의 급속열분해 운전 조건이 열분해 생성물에 미치는 영향을 확인하기 위한 폐목재의 급속열분해 실험을 수행하였다. 폐목재의 급속열분해 실험은 반응온도와 질소유량 그리고 시료의 투입속도 등 원뿔형 분사층 반응기 내부의 운전조건 변화를 통하여 진행하였으며, 실험을 통해 생산된 액상 생성물인 바이오 오일의 물리-화학적 특성을 분석하여 열분해 조건에 따른 급속열분해 특성을 고찰하였다.
        48.
        2017.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The quality characteristics of ‘Xiangshui’ pears (Pyrus ussuriensis) treated with different concentrations of biomass pyrolysis liquid (BPL) during storage at 25℃ were investigated. The weight of ‘Xiangshui’ pears treated with BPL declined at a slower rate than that of the control. The rot index of BPL-treated ‘Xiangshui’ pears decreased with increasing storage times, and treatment with 20-fold-diluted BPL resulted in the lowest rot index after storage for 12 days. The total acid content of ‘Xiangshui’ pears treated with 20-fold-diluted BPL was 0.19%, and was the highest after storage for 12 days. After storage for 12 days, the total sugar content of ‘Xiangshui’ pears treated with 20-fold-diluted BPL was 7.19%; this was significantly higher than that of the control, but not significantly different from that of pears treated with other BPL dilutions. The vitamin C content of ‘Xiangshui’ pears showed a decreased trend, and pears treated with 20-fold-diluted BPL had a vitamin C content of 2.21 mg/100 g after storage for 12 days and showed the least decline compared to other treatments. In addition, respiration in ‘Xiangshui’ pears was effectively inhibited by treatment with BPL. In conclusion, BPL treatment exerts a protective effect on the quality of ‘Xiangshui’ pears during storage, with 20-fold-diluted BPL being the most effective.
        49.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        This study aims to investigate the behavior characteristics of solid particles within conical spouted beds depending on the inlet gas velocity. Electrical capacitance volume tomography was applied to the measurements of the instantaneous gas-solid flow structures in a conical spouted bed. The effects of inlet gas velocity on the solid volume fraction and pressure were investigated. The different inlet gas velocities showed a certain influence on the gas?solid flow behaviors in the conical spouted bed. A symmetric core-annulus structure in the conical spouted bed was observed. Solid particles in the core and annulus areas were mixed at the ratio U/Ums = 1.6. It would be efficient to operate a fast pyrolysis reactor for the high heat and mass transfer of waste woods and sand particles.
        50.
        2017.05 서비스 종료(열람 제한)
        해마다 증가하는 폐타이어의 발생 및 그에 따른 처리 문제가 대두되는 현 상황에서 폐타이어의 재생에너지화 기술개발 중요성이 날로 증대되고 있다. 특히, 국내에서 폐타이어 처리는 시멘트 킬른 및 단순소각에 의한 열원으로의 이용이 대부분을 차지하는데 이는 연소 시 발생되는 오염물질로 인한 2차 환경오염 또한 야기하는 문제이므로 폐타이어의 안정적인 처리를 통한 재생에너지원으로서의 경제성 향상 및 환경오염 저감 등의 해결책에 관한 기술개발 필요성이 촉구되고 있다. 폐타이어를 자원화하기 위한 열적처리 기술 중 열분해 공정은 무산소의 조건에서 500℃ 정도 온도 조건으로 간접 가열하여 1~2초 이내로 반응시킨 후 고분자 물질을 분해하여 연료로 변환하는 공정으로서 연소 반응과는 달리 오염물질이 발생하지 않는 친환경적인 처리 기술이며, 공정을 통하여 생산되는 열분해오일, 카본블랙, 철심 등과 같은 유용자원의 회수는 부가가치의 창출을 통하여 경제성 향상에 이바지 할 수 있는 이점을 가지고 있다. 따라서 본 연구에서는 폐타이어의 다양한 급속열분해 운전 조건을 통하여 재생에너지화 연구를 수행하였다. 실험에는 유동층 반응기에 비하여 시료와 유동매질 간 열 및 물질전달 속도가 높고, 비교적 큰 입자도 열분해 가능하며, 내부에 분산판이 없어 압력강하량이 적은 장점을 지닌 원뿔형 분사층 반응기를 사용하였다. 폐타이어 급속열분해 실험은 반응온도와 질소유량 및 시료의 투입속도 등 여러 인자를 변수로 두어 진행하였으며, 실험을 통하여 조건별로 생산된 열분해오일 및 카본블랙의 물리-화학적 특성을 분석하여 폐타이어의 급속열분해 반응 특성을 고찰하였다. 특히, 열분해 오일은 재생에너지원으로서 연료로서의 가치가 있는지에 대하여 알아보고자 하였다.
        51.
        2017.05 서비스 종료(열람 제한)
        선택적 촉매환원법(Selective Catalytic Reduction, SCR)에서는 V2O5 주로 계열 촉매가 주로 상용되어 있으며 높은 NOX 저감효율의 장점을 지님에도 불구하고 300~400℃의 좁은 활성범위를 가지고 있는 단점이 있다. 이를 보완하기 위해 최근 저온 SCR촉매에 관한 연구가 활발히 진행되고 있으며, 대표적인 카본류 중에서 비교적 가격이 저렴한 산업 및 농업 부산물을 열분해시켜 형성된 바이오매스 Char를 촉매로 활용하는 방안에 관한 연구가 진행되고 있다. 본 연구에서는 연소공정에서 주로 발생되는 대기오염물질 중 대표적인 물질인 질소산화물(NOX)의 SCR공정에서 반응특성을 고찰하기 위해 Lab-scale 규모의 실험 장치를 구현하였다. 실험에 사용된 음식물 열분해-Char는 600℃ 4시간동안 열분해 후 SCR공정에서 촉매로 활용하여 전이금속담지유무, 온도, 수분유무 등의 실험 조건을 변화시켜 NOX를 효율적으로 처리할 수 있는 조건을 도출하였다. 대상시료의 물리․화학적 특성을 파악하기 위해 공업분석, 원소분석을 수행하였으며, 제조한 촉매의 특성은 질소 흡․탈착법, SEM, ICP, EDX 등을 이용하여 분석하였다. 실험에 사용된 Char의 비표면적은 400 m²/g 이상으로 활성화 전 비표면적보다 100배 이상 증가함을 나타냈다. 실험결과에 따라 전이금속인 Cu를 담지하였을 경우, 담지하지 않은 경우보다 높은 저감효율을 나타냈다. NO의 저감효율은 최고 효율을 보이는 350~400℃ 부근의 영역에서 60% 이상의 저감효율을 보였고 그 이후부터 온도가 증가할수록 감소되는 경향을 나타냈다. 수분을 투입하였을 경우 모든 온도 영역에서 NO 저감효율에 악영향을 미치는 것으로 확인되었으며, 최적 효율대비 약 20%의 차이를 나타내었다. 이는 수분과 NH3와의 경장흡착으로 인해 촉매표면에 NO와 반응에 필요한 NH3의 흡착종이 부족하므로 촉매 표면의 활성저하를 일으키기 때문으로 사료된다.
        52.
        2017.05 서비스 종료(열람 제한)
        화석연료의 고갈문제와 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 중국, 인도 등의 국가에서 경제 성장을 위한 화석연료 의존도가 계속 높아지고 있다. 그러나 화석연료는 가격의 변동이 심하고, 한정된 매장량을 지니기 때문에 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 바이오매스 및 폐자원을 활용하여 에너지를 생산하는 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 바이오에너지는 바이오매스, 폐자원으로부터 전환된 에너지 사용 시 발생되는 이산화탄소가 순환을 통하여 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적인 친환경 에너지이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 분해공정을 통하여 더욱 가치있는 에너지의 형태로 활용 가능하며, 그 중 급속열분해 공정은 무산소 조건, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 반응조건으로 하여 생산된 타르를 응축과정을 통해 액상 생성물인 바이오원유로 회수하는 공정이며 바이오원유의 회수율을 가장 높일 수 있는 공정이다. 바이오오일의 수율 및 성상은 급속열분해 운전조건에 따라 영향을 받으며 그 중 반응온도가 가장 중요한 인자이다. 따라서 본 연구에서는 낙엽송 톱밥을 원료로 하여 400 - 550℃로 반응온도를 변화시켜가며 바이오원유를 생산하고 생산된 바이오원유의 수율 및 다양한 물리화학적 분석(고위발열량, 수분함량, 점도, pH 등)을 통하여 그 특성을 파악하는 연구를 진행하였다.
        53.
        2016.11 서비스 종료(열람 제한)
        산업발달로 인한 화석 연료의 급격한 사용으로 기후변화와 연료고갈 문제가 대두되고 있어 폐기물자원화 및 신재생에너지에 대한 관심이 급증하고 있다. 선행되어온 연구들은 바이오매스나 플라스틱의 대체연료 가능성 연구들로 국한되어 진행되었다. 폐플라스틱 필름의 경우 많은 연구가 진행되어 왔으나, 현재 발생되는 폐플라스틱 필름에 관한 연구는 미비한 상황이다. 많은 폐플라스틱 필름의 발생량에 비해 절반정도를 웃도는 재활용처리 비율은 다른 폐플라스틱 필름 처리방안 마련이 필요하다는 점을 시사한다. 열분해를 이용한 오일 및 화학원료 생산에 대한 관심이 높아지고 있다. 따라서 본 연구에서는 폐플라스틱 필름의 물리・화학적 특성 분석 및 열중량분석기를 통한 동역학분석과 파이롤라이저-가스크로마토그래피 /질량분석기를 이용한 반응 생성물 분석하여 폐플라스틱 필름의 열분해 공정 도입 가능성을 추가 확인하고자 한다. 또한 현재 배출되는 폐플라스틱 필름류의 열분해 특성과 어떤 성분이 생성되는지 알아보고 공정설계 기초자료로 활용되고자 폐플라스틱 필름의 열분해 특성연구를 수행하였다.
        54.
        2016.11 서비스 종료(열람 제한)
        폐 바이오매스의 열 화학적 전환 공정 중 하나인 급속열분해 공정은 공정변수에 따라 열분해 생성물의 수율 및 특성이 변화한다. 급속 열분해 반응이 이루어지는 반응기는 전체 급속 열분해 공정의 핵심이며, 폐 바이오매스의 급속열분해 반응을 위해서는 1,000~10,000℃/s의 빠른 열전달 속도, 500℃의 열분해 반응온도, 1~2초이내의 열분해 생성물 체류시간이 요구된다. 따라서 이를 실현하기 위한 급속열분해 반응기 개발에 많은 연구가 진행되었다. 현재 개발되어 사용 중인 대표적인 급속열분해 반응기는 기포 유동층, 순환유동층, 분사층, Augur형, 융해열분해, 진공열분해 등의 반응기가 있다. 이중 분사층 반응기는 기체-고체 간의 열 및 물질전달이 우수하고, dilute spouted bed regime 에서는 반응기 내 열분해 가스의 체류시간이 짧아 오일의 수율을 기존 유동층 반응기 보다 증가시킬 수 있는 장점이 있다. 분사층 급속열분해 반응기 내 폐 바이오매스의 급속 열분해 반응은 기체-고체간의 수력학적 특성과 열전달 특성에 영향을 받는다. 따라서 분사층 급속열분해 반응기의 최적 설계와 운전을 위해서는 반응기 내 수력학적 특성과 열전달 특성에 대한 정보가 필요하다. 그러나 현재까지 분사층의 운전조건에 따른 분사층 내 열전달 특성에 대한 연구는 부족한 실정이다. 따라서, 본 연구에서는 분사층 내 열전달 특성 연구를 위하여 열전달 센서를 설계/제작하였으며, 제작된 열전달 센서를 통하여 분사층내 기체-고체간의 열전달 특성을 측정하였다. 분사층 내 기체-고체간의 열전달 실험은 공탑 속도, Geldart 입자분류, bed 높이를 실험변수로 하여 실험을 수행하였으며, 실험을 통하여 실험변수에 따른 분사층 내 기체-고체간의 열전달 계수의 변화를 연구하였다.
        55.
        2016.11 서비스 종료(열람 제한)
        Non-CO2 온실가스인 염화불화탄소(Chlorofluorocarbons, CFCs)와 수소염화불화탄소(Hydro-Chlorofluorocarbons, HCFCs)는 오직 인류의 경제(산업) 활동에 의해 발생하며 인체에 무해하고 안정한 물질이기 때문에 냉매, 분사제, 발포제 등 여러 분야에서 다양하게 사용되었지만 오존층 파괴물질으로 국제협약인 몬트리올 의정서에 의해 생산과 사용이 규제되었다. 이에 대한 대체물질로써 수소화불화탄소(Hydrofluorocarbons, HFCs)와 과불화탄소(Perfluorinated compounds, PFCs)가 개발되었지만 여전히 높은 지구온난화지수(Global Warming Potential, GWP)를 지닌 것으로 알려져 있다. 또한 국내 HFCs 소비량은 꾸준히 증가하고 있는 추세로 HFCs 중 전기・전자제품 및 자동차에 99% 이상 냉매로 사용되는 HFC-134a(1,1,1,2-Tetrafluouroethane, CH2FCF3)는 물리・화학적으로 안정된 난처리성 물질로써 처리 시 많은 에너지(높은 온도)가 필요하며, 강산으로 알려진 불산(Hydrogen fluoride, HF)의 발생으로 처리시설의 부식을 야기시킨다. 이에 따라 HFC-134a의 안정적이고 효율적인 분해 기술 개발을 위한 연구가 필요하다 사료되며 본 연구는 수직형 관형흐름 반응기를 이용한 촉매열분해를 적용하여 촉매별 HFC-134a 분해효율 연구하고, 각 촉매별 열분해 반응 생성물의 비교를 통해 HFC-134a의 촉매열분해 특성을 알아보고자 하였다.
        56.
        2016.11 서비스 종료(열람 제한)
        자동차 산업 발달로 인하여 해마다 증가하는 폐타이어 발생과 그에 따른 처리에 관한 문제는 날로 심각해지고 있다. 폐타이어는 연소 시 오염물질 발생으로 인한 2차 환경오염을 야기하므로 보다 안정적으로 재생 에너지화 하는 폐기물 처리 방법에 대한 기술개발 중요성이 날로 증대되고 있다. 또한 국내 폐타이어의 주 이용 분야가 시멘트 킬른 또는 단순 소각에 의한 열원으로의 이용이 약 60%를 차지한다는 점에서 폐타이어의 재생에너지원으로서 경제성을 향상 시키는 요구가 나타나고 있다. 따라서 폐타이어 재생 에너지화의 경제성 문제를 해결하기 위하여 부가가치를 높이는 기술 개발이 절실히 요구되고 있다. 폐타이어를 자원화 하는 열분해 기술은 무산소 조건에서 400~600℃ 정도의 반응온도로 폐타이어를 가열하여 고분자 물질을 분해하는 친환경적인 공정으로, 열분해오일, 카본블랙, 철심과 같은 열분해 부산물의 회수를 통하여 경제성 또한 높일 수 있는 이점을 가지고 있다. 이에 따라 본 연구에서는 폐타이어의 재생 에너지화 연구를 위하여 폐타이어의 열분해 특성 연구를 수행하였다. 폐타이어의 열분해는 기체-고체간 열 및 물질 전달이 우수한 원뿔형 분사층 반응기를 사용하여 실험을 수행하였다. 폐타이어 열분해 실험은 열분해 반응온도와 시료의 투입속도를 실험 변수로 선정하여 실험을 수행하였으며, 실험 조건별로 생산된 열분해 오일의 물리-화학적 특성을 분석하여 폐타이어 열분해 오일의 특성을 연구하였다.
        57.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        This paper assesses the feasibility of producing fuel energy from sewage sludge via four processes: microwave-induced pyrolysis/gasification and conventional pyrolysis/gasification. Both pyrolysis and gasification produced gas, char, and tar. The gas produced for the gasification contained mainly hydrogen and carbon monoxide with a small amount of methane and hydrocarbons (C2H4, C2H6, C3H8). However, the gasification produced higher carbon monoxide instead of the hydrogen. The microwave gasification generated higher heavy tar compared to other processes. As a light tar, benzene generated higher value for both the pyrolysis and gasification. The sludge char showed a vitreous-like texture for the microwave process and a deep crack shape for the conventional heating process. These results indicate that the gas produced from the microwave processes of wet sewage sludge might be usable as a fuel energy source, but this would require removal of the condensable PAH tars. The sludge char produced could also be used as a solid fuel or adsorbent.
        58.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        For material recovery of black carbon and pyrolysis oil, pyrolysis is considered as an alternative to combustion-based technologies for treatment of waste tire. This study investigated the heat transfer optimization in a pyrolysis reactor for waste tire chips with a capacity of 24 t/d. The reactor was required to have a larger heat transfer rate from hot gas to tire chips in the early stage of pyrolysis, whereas the rate in the later stage should be lower. This was to prevent thermal cracking of heavy compounds in the pyrolysis vapor and to improve the quality of black carbon. CFD was applied to analyze the flow and heat transfer in the complex geometry of the reactor for a total of nine design cases. It was found that modifications to control the distribution of gas flow rate along the reactor are more effective for the present reactor than adjusting the measures for heat transfer enhancement (such as fins). The ideal design improvement was to divide the reactor into two gas sections for a separate control of the flow rate, and to remove the fins of which its alignment perpendicular to the flow inhibits the hot gas from approaching the tube of tire chips.
        59.
        2015.11 서비스 종료(열람 제한)
        우리나라는 국토의 약 64%가 산림으로 구성되어 있으며, 2011년 기준 국내 산림면적은 6,443천ha이다. 산림청 자료에 따르면 국내 산림 바이오매스 발생량은 총 704만 ㎥으로 발생량 중 약 45%인 319만㎥이 제재목, 펄프, 보드용, 축산깔개, 버섯재배, 열병합 발전 등에 이용된 것으로 추정된다. 발생량의 55%인 385 만㎥는 현재에도 미이용 상태로서 이러한 산림 바이오매스 에너지의 이용을 위한 경제성과 효율성 확보를 위한 기술 개발이 시급한 실정이다. 바이오매스를 에너지로 변화하는 열화학적 변환 공정은 연소, 가스화, 급속 열분해 공정이 있으며, 이중 급속열분해 공정은 산소가 없는 조건하에서 500℃ 내외의 고온에서 짧은 시간 동안 반응시킨 후 연료로 전환하는 공정이다. 급속열분해 과정을 거치면 바이오매스는 분자 간 결합뿐만 아니라 C-C 결합, C-O 결합의 해체 등 화학적 전환이 일어나게 되며 최종적으로 액상 연료인 바이오 오일과 고형분인 바이오탄, 가스형태의 비응축성 가스를 생성한다. 바이오 오일은 보일러․터빈 등 발전용 연료뿐만 아니라 수송용 연료와 화학소재 등으로 활용이 가능한 잠재력을 갖고 있다. 따라서 공정 후 최종 생성물의 수율을 최적화하는 것은 공정의 효율성과 바이오 오일의 활용 가능성을 높이는데 중요한 역할을 한다. 더불어 바이오 오일의 물리적․화학적 특성을 분석함으로써 연료로서의 특성을 평가하고 소재화 활용 방안을 구축할 뿐만 아니라 더 나아가 화석연료를 대체할 에너지원으로써의 가치 및 발전 가능성을 가늠할 수 있다. 바이오 오일의 수율과 물리적․화학적 특성에 영향을 미치는 요인으로는 크게 공정 조건과 원료 조건으로 나눌 수 있다. 공정 조건은 반응온도, 반응기내 체류시간이 있으며 원료 조건은 바이오매스 함수율, 입자 크기, 바이오매스 내 화학 조성 등이 있다. 본 연구에서는 공정조건, 원료 조건 변화에 따른 바이오 오일의 물리적․화학적 특성을 연구하기 위하여 분사층 급속열분해 실험장치를 이용하여 폐목재 톱밥 급속열분해 실험을 수행하였다. 급속열분해 실험은 공정 조건인 반응온도, 체류시간, 투입속도와 원료 조건인 바이오매스 입자 크기를 각각 변화하며 실험을 수행하였으며, 각 조건에서 생산된 바이오 오일의 원소분석, 발열량, 수분함량, 점도, pH, GC-MS 분석을 수행하였다. 그리고 실험 결과를 바탕으로 바이오 오일의 연료적 특성 평가 및 화학소재 활용 방안에 대하여 고찰하였다.
        60.
        2015.11 서비스 종료(열람 제한)
        전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 현재 화석연료의 의존도가 높으나, 화석연료의 가격의 변동이 심하고, 한정된 매장량을 지니며, 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미친다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오 에너지는 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 최근까지 옥수수, 사탕수수 등의 식량자원을 에너지원으로 사용하였지만 이러한 식량자원의 사용은 국제 곡물가 폭등 및 후진국의 식량파동을 야기하므로 비 식량에너지 작물개발에 대한 연구가 활발히 진행되고 있다. 이러한 비 식량 바이오매스에 대한 연구의 일환으로 농촌진흥청 국립식량과학원에서 거대억새를 개발하였다. 거대억새는 국내에 자생하는 물억새의 일종으로 염색체수가 76개로 4배체이며 기존 물억새 대비 크기와 굵기가 2배 이상이기 때문에 수확량은 약 30 ton/ha 로 1.5배 가량 높다. 또한 셀룰로오스 함량이 44%로 많고 회분이 1.6%로 적기 때문에 에너지자원으로써의 잠재성을 지니고 있다. 따라서 본 연구에서는 거대억새를 원료로 하여 bio-oil을 생산하는 연구를 진행하였다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 공정을 통하여 더욱 가치 있는 에너지의 형태로 변환될 수 있으며 그 중 급속열분해 공정은 무산소 분위기, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 유지하여 액상생성물인 bio-oil의 수율을 극대화 하는 공정이다. Bio-oil의 수율과 품질은 급속열분해 운전조건에 영향을 받으며 그 중 반응온도는 가장 영향을 많이 미치는 인자이다. 본 연구에서는 1kg/h 급 사각형 유동층반응기를 이용, 기포유동층 영역에서 400-550℃의 온도범위로 거대억새를 급속열분해 하였고, 생성된 bio-oil의 발열량, 수분함량, 점도, GC/MS 등의 분석을 통하여 특성 및 품질분석을 실시하였다. 또한 타 목본계, 초본계 바이오매스들과의 비교를 통하여 거대억새 bio-oil의 연료로써 가치평가도 함께 실시하였다.
        1 2 3 4 5