검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 85

        41.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% H3PO4 and NH4OH were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and N2 adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs 〉 A-ACFs 〉 pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.
        3,000원
        42.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the previous results of the equilibrium and batch adsorptions, the removal efficiency of the two-step surface-modified activated carbon (2ndAC) for heavy metal ions such as Pb, Cd, and Cr in fixed column was evaluated by comparing with that of the as-received activated carbon (AC) and the first surface-modified activated carbon (1stAC). The order of metal removal efficiency was found as 2ndAC 〉 1stAC 》 AC, and the efficiency of the 2ndAC maintained over 98% from the each metal solution. Increase of the removal efficiency by the second surface modification was contributed to maintain favorable pH condition of bulk solution during adsorption process. The removal of the heavy metals on the 2ndAC was selective with Pb being removed in preference to Cr and Cd in multicomponent solutions and slightly influenced by phenol as the organic material.
        4,000원
        43.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The impregnated activated carbons were prepared by the incipient wetness method with the contents of KIO3 varied from 1.0~10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were 2,600~2,800 m2/g and 1.1~1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3~21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1~2.8 times depending on the impregnation content. The optimum contents of KIO3 were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2~ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400℃ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.
        4,000원
        44.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The two-step surface modifications of activated carbon was carried out to improve the adsorption capacity of toxic heavy metal ions in liquid phase. Physical and chemical properties of the as-received activated carbon (AC) and two kinds of surface-modified activated carbons (1stAC and 2ndAC) were evaluated through the BET analysis, surface acidity, and oxides measurements. Specific surface area and pore volume did not significantly change, but surface oxide-group remarkably increased by the surface modification. Equilibrium and batch adsorptions of the various metals, such as Pb, Cd, and Cr, using AC, 1stAC, and 2ndAC were performed at initial pH 5. The adsorption capacity and rate of 2ndAC were higher than those of AC and 1stAC. The carboxylic/sodium carboxylate complex groups were developed from the two-step surface modification of activated carbon, which strongly affected the adsorption of metal ions.
        4,000원
        45.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, impregnated activated carbon fiber (IACF) was manufactured to pitch-based activated carbon fibers (ACF) with potassium hydroxide (KOH) by using wet impregnation method to raise nitrogen oxides (NOx) adsorptivity. The properties of IACF were observed using EPMA, TGA and DSC and NOx adsorptivity was observed at high and low temperature. Before and after adsorption was analyzed using ToF-SIMS for examine surface characterization of adsorbed NOx. The results showed that the better adsorptivity appeared for increasing KOH ratio. So, NOx adsorptivity showed result that is proportional between KOH and the adsorbed amount. On the other hand, adsorbent that manufactured without washing was better NOx adsorptivity than adsorbent that manufactured with washing. The behavior of adsorption show that crossing time of NO and NO2 delayed for a rising adsorptivity. And NO ratio increased but NO2 ratio decreased according as KOH ratio increases. NOx was confirmed through surface analysis that remain in NO2- and NO3- form on IACF surface.
        4,000원
        46.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbons with high surface area of 2,600 m2/g and high pore volume of 1.2 cc/g could be prepared by KOH activation of rice hulls at a KOH:char ratio of 4:1 and 850℃. In order to increase the adsorption capacity of hydrogen sulfide, which is one of the major malodorous component in the waste water treatment process, various contents of Na2CO3 and KIO3 were impregnated to the rice-hull activated carbon. The impregnated activated carbon with 5 wt.% of Na2CO3 showed improved H2S adsorption capacity of 75 mg/g which is twice of that for the activated carbon without impregnation and the impregnated activated carbon with 2.4 wt.% of KIO3 showed even higher H2S adsorption capacity of 97 mg/g. The improvement of H2S adsorption capacity by the introduction of those chemicals could be due to the H2S oxidation and chemical reaction with impregnated materials in addition to the physical adsorption of activated carbon.
        4,000원
        47.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of adsorption and desorption of benzene and toluene were investigated at a fixed bed packed with the activated carbon and activated carbon fiber. Through breakthrough experiments under various feed concentration conditions, it was found that the slope of mass transfer zone and the tailing in the breakthrough curves were different from the feed conditions due to different heats of adsorption. In hot nitrogen desorption, the regeneration time and mass transfer zone of the toluene desorption curve were longer than those of the benzene desorption curve because of the difference in adsorption affinity. With an increase in the regeneration temperature, the height of roll-up and the sharpness of desorption curves increased but the regeneration times decreased. The adsorption capacities of the activated carbon and activated carbon fiber after three-time thermal regenerations decreased about 25% and 37% for benzene and 18% and 25% for toluene, respectively. To investigate the effect of the regeneration temperature on the energetic efficiency, the characteristic desorption temperatures of toluene and benzene were investigated by calculating purge gas consumption and temperature.
        4,200원
        48.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to 250℃ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from 30℃ to 250℃, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to 150℃ for the removal of radioiodine in a nuclear facility.
        4,000원
        51.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of the objectives of this study were to develop a process for manufacturing activated carbons from agricultural by-products(rice shells and saw dust) and another is to measure the iodine number, ash content and removal ratio of COD. The other is to compare those values with those of commercialized activated carbons. Agricultural by-products based activated carbons were manufactured through the steam-reaction method. A rotary kiln type furnace was used for both carbonization and activation. The optimum operating temperatures for carbonization and activation were 650℃ and 900℃, respectively. For the activated carbons produced under these conditions, the iodine number was 1,127mg/g. Especially, removal efficiency of COD was 61.5% for 40mg/L of wastewater and 30% for 150mg/L of SLS(Sodium Lauryl Sulfate).
        4,300원
        54.
        1994.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The occurrence of objectionable tastes and odors in drinking water is a common and widespread problem. The most troublesome odors are usually those described as muddy or earthy-musty. Two organic compounds which have been implicated as the cause of earthy-musty odor problems in water are geosmin and 2-Methylisoborneol. These earthy-musty organics have been shown to be metabolites of actinomycetes and blue green algae. The purpose of this paper is to describe adsorbability in removing these two oder causing compounds(geosmin and 2-MIB) upon various conditions like pH variation, adding humic acid and different activated carbon. The conclusion of this study are as followings. In batch test, carbon dosage is 10mg/100ml for geosmin and 15mg/100ml for 2-MIB. Both were in equilibrium state after 60 hours. In model simulation, F-P model described experiment data and modelling data appropriately in geosmin but F-S model not. In case of 2-MIB, models didn't describe relation between experiment and modelling data well. Two causative agents of earthy-musty odor compounds, geosmin and 2-MIB, are strongly adsorbed by activated carbon either coconut or brown. There appears to be no effect of pH (3,7,9) on adsorption of these two organics. Activated carbon proved to be more effective for removing geosmin than for removing 2-MIB. When activated carbon is. used in removing these two organics, the removal of these appeared to be adversely affected by back ground organic compounds, such as humic substances, due to competitive adsorption.
        4,500원
        55.
        1994.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is well known that the adsorption character of activated carbon is dependent on the specific surface area and pore volume, but the relationship between the surface-chemical structure and the adsorption character has not been studied very often. The purpose of this study is to investigate the effect of the acidic surface functional groups of activated carbon and the adsorption characteristics of low concentration phenol. So three types of activated carbons and four different treatments were introduced to this isotherm experiment. These treatments were nontreatment, 1N $HNO_3$ treatment, 6N $HNO_3$ treatment, $H_2O_2$ treatment. The conclusions of this study are as followings. If the initial concentration of phenol is high as 5mg/l, the adsorption is dependent on the specific surface area. If the initial concentration of phenol is low as $100{\mu}g/l$, the adsorption is dependent on the average pore volume. The acidic surface functional groups prevent the adsorption of phenol molecules to activated carbon. And the adsorbed amount decreases more for $HNO_3$ treatment than for $H_2O_2$ treatment and more for concentrated $HNO_3$ treatment than for dilute $HNO_3$ treatment.
        4,000원
        56.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, △H and △G, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
        57.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various P2O5 concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing P2O5 concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of P2O5; however, above 1,000 mg/L of P2O5, the same amounts adsorbed at 1,000 mg/L of P2O5 were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.
        58.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        In this study, the low-temperature vacuum swing adsorption (low temp. VSA) process was applied to the activated carbon adsorption tower for treatment of volatile organic compounds (VOCs) to extend the replacement period of the adsorbent and to solve the difficulties of operation management. A practical application study was performed based on continuous operation in the field. The VSA process removes the adsorbate by reducing the pressure at a relatively low temperature (90℃ or less) to compensate for the disadvantages of the conventional thermal swing adsorption (TSA) process. A pilot scale VSA process with a size of 30 m and 2 min−1 was applied to the small scale painting plant, which is the main source of VOCs, and subject to 100 adsorption/desorption cycles. After the sampling of activated carbon every 20 cycles, the specific surface area and derivative thermogravimetric analysis (DTA) analysis were investigated to analyze the change of activated carbon characteristics with increasing cycles. During 100 continuous cycles, toluene gas was arbitrarily supplied to the pilot VSA process to compare toluene adsorption capacity with respect to raw activated carbon. More than 99% of the VOCs emitted from the paint plant were adsorbed and removed during the operation of the VSA process. The increase in cycle did not affect the specific surface area and micropores of activated carbon. However, the physical adsorption amount of the non-desorbed adsorbate remaining in the micropores tends to increase; therefore, it is considered that the effective adsorption amount decreases as the number of regeneration increases. As a result of the toluene adsorption test of the pilot plant after 100 consecutive cycles, 91% removal efficiency relative to the raw activated carbon was maintained. Thus, stable application of low-temperature VSA equipment is feasible in field application.
        59.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        This study discusses regeneration of mercury-contaminated, activated carbon from adsorption in the mercuryrecovery process. Mercury in activated carbon was desorbed by thermal treatment, and the regeneration efficiency was confirmed by mercury content and iodine adsorption comparing new and spent activated carbon. Up to 95% of mercury desorbed and up to 86% adsorption performance regenerated at 673 K. Therefore, it is expected that activated carbon can be reused many times by regenerating it through thermal treatment without disposing of mercury-containing activated carbon.
        60.
        2017.05 서비스 종료(열람 제한)
        하수슬러지의 발생량은 꾸준히 증가하고 있으며, 하수슬러지의 해양투기 금지로 인해 대체 처리 방안들이 요구되고 있다. 다양한 하수 슬러지 처리 방안들 중, 하수 슬러지를 이용한 활성탄의 제조는 슬러지를 폐기가 아닌 재이용하는 방안으로 제기되고 있다. 활성탄은 탄소 성분을 이용하여 제조되므로, 하수 슬러지를 이용하여 활성탄을 제조하는 것도 가능하다. 기존의 대기오염제어설비에서 쉽게 제거되지 않는 원소 수은은 활성탄 흡착을 통해 제거될 수 있다. 본 연구에서는 국내 하수처리장에서 발생한 건조슬러지를 이용하여 다양한 물리적 특성을 지닌 활성탄을 제조하였고, 수은 흡착 능력을 평가하였다. 그리고 다른 원료에서 제조된 활성탄과 수은 흡착 결과를 서로 비교하였다.
        1 2 3 4 5