검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 67

        41.
        2017.11 서비스 종료(열람 제한)
        전 세계적으로 자원의 고갈과 온실가스로 인한 기후변화가 지구의 환경을 위협하는 요인으로 작용하고 있다. 이에 국내에서는 폐기물의 재활용을 촉진하고, 더 높은 부가가치를 부여하기 위한 기술・정책적 노력들이 이루어지고 있다. 그 중 하나로 생활폐기물을 기계적 선별공정과 생물학적 처리 공정이 결합된 MBT(Mechanical Biological Treatment) 시설이 도입되었다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 SRF(Solid Refuse Fuel)로 생산할 경우 에너지 자원의 대체제로 사용 가능성이 크다고 판단된다. 이에 본 연구에서는 국내에서 생산되는 SRF에 대하여 기초특성분석을 실시하고 효율적인 열에너지 회수를 위해 연소실험을 진행하였다. 시료의 기초특성분석결과, 수분, 회분함량이 낮고 탄소성분과 발열량이 높게 나타났다. 연소 특성 및 오염 물질의 발생 특성을 파악하기 위하여 고정층 반응기에서 공기비 1.8~2.6 범위에서 실험을 진행하였다. 뿐만 아니라 각 공기비에서의 배가스 성분을 연소가스측정기(MK9000)를 이용해 그 특성을 알아보았으며 가스상 오염물질 배출특성을 알아보기 위하여 오염물질인 HCN, HCl 에 대해 분석을 실시하였다. 배가스 특성에서 CO의 농도가 거의 0%로 나타난 것으로 보아 완전연소가 잘 일어나고 있음을 판단 할 수 있었다. 또한 배출된 가스상 오염물질의 경우 배출 허용기준(HCl 15ppm, HCN 5ppm)을 모두 만족하는 것으로 나타났지만 NOx의 경우, 배출 허용 기준(80ppm)에 비해 약간 높은 값을 보였다. 모든 조건을 고려하였을 때 연소 반응이 활발히 일어나는 것을 알 수 있었지만 SRF를 연소공정에 적용시 추가적인 NOx 제어 시설이 필수적으로 설치되어야 할 것으로 판단된다.
        42.
        2017.11 서비스 종료(열람 제한)
        범지구적인 산업활동으로 인하여 발생된 지구온난화에 대처하기 위하여, 기후변화협약 당사국총회에서는 신 기후변화체제 합의문인 파리 협정을 채택하였다. 이를 위해 대부분 국가가 다양한 에너지 정책을 펼치고 있으며, 우리나라는 2035년까지 신재생에너지 보급률 11 % 달성을 위하여 제4차 신재생에너지 기본계획을 수립, 발표하였다. 이러한 신재생에너지는 다양한 에너지원으로 구성되어 있으며, 이 중 폐기물 에너지화 기술로부터 생산된 폐기물에너지는 신재생에너지 보급량 중 63.5 %로 가장 높은 보급량을 차지하고 있다. 현재 폐기물의 효율적인 자원화 기술 중 하나인 고형연료(SRF, solid refuse fuel)를 이용한 발전 사업이 추진되고 있다. 국내에서 생산되는 SRF의 경우, 생활폐기물 속 재활용 자원을 최대한 회수함으로써 가연분 함량이 높아 대체 에너지로서의 가능성이 높게 평가받고 있으며, 본 연구에서는 경제성을 확보하기 위해 성형 SRF가 아닌 비성형 SRF를 사용하여 연구를 진행하였다. 또한, 열 회수 및 합성가스(H2+CO) 생산을 위해 가스화 공정을 적용해보았으며, 고정층 반응기인 down draft fixed bed와 유동층 반응기인 bubbling fluidized bed의 가스화 특성을 알아보고자 하였다. 이뿐만 아니라 가스화 공정의 주요 운전 요인 중 하나인 ER(Equivalent Ratio)에 따른 합성가스 조성, 가스 수율, 고 탄화수소 물질인 C2-C6의 함량, 합성가스의 저위발열량 그리고 가스화 효율의 가장 중요한 지표라 할 수 있는 냉가스 효율과 탄소 전환율을 통해 최적 조건을 도출하고자 하였다.
        43.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        The optimum design and scale-up of a fast pyrolysis reactor require a fundamental understanding of its hydrodynamics characteristics. Extensive investigations have been carried out, both theoretically and experimentally, to understand the hydrodynamic characteristics of gas-solid two-phase flow in a pyrolysis reactor, such as velocity field, solids concentration, and pressure drop. Numerical simulation can provide a promising alternative for studying the hydrodynamics of gas-solid flows in the fast pyrolysis reactor. In this study, computational particle fluid dynamics (CPFD) was used to investigate the hydrodynamic characteristics of bubbling fluidized bed (BFB) and conical spouted bed (CSB) reactors. These characteristics were analyzed in terms of pressure drop, solid distribution, and solid circulation rate. The BFB reactor was found to have a lower efficiency than the CSB reactor. The pressure drop of the CSB reactor was 25% less than that of the BFB reactor. The solid circulation rate of the CSB reactor was 68% greater than that of the BFB reactor.
        44.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.
        45.
        2017.05 서비스 종료(열람 제한)
        화석연료의 고갈문제와 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 중국, 인도 등의 국가에서 경제 성장을 위한 화석연료 의존도가 계속 높아지고 있다. 그러나 화석연료는 가격의 변동이 심하고, 한정된 매장량을 지니기 때문에 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 바이오매스 및 폐자원을 활용하여 에너지를 생산하는 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 바이오에너지는 바이오매스, 폐자원으로부터 전환된 에너지 사용 시 발생되는 이산화탄소가 순환을 통하여 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적인 친환경 에너지이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 분해공정을 통하여 더욱 가치있는 에너지의 형태로 활용 가능하며, 그 중 급속열분해 공정은 무산소 조건, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 반응조건으로 하여 생산된 타르를 응축과정을 통해 액상 생성물인 바이오원유로 회수하는 공정이며 바이오원유의 회수율을 가장 높일 수 있는 공정이다. 바이오오일의 수율 및 성상은 급속열분해 운전조건에 따라 영향을 받으며 그 중 반응온도가 가장 중요한 인자이다. 따라서 본 연구에서는 낙엽송 톱밥을 원료로 하여 400 - 550℃로 반응온도를 변화시켜가며 바이오원유를 생산하고 생산된 바이오원유의 수율 및 다양한 물리화학적 분석(고위발열량, 수분함량, 점도, pH 등)을 통하여 그 특성을 파악하는 연구를 진행하였다.
        46.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        This study has focused on identifying the cause of agglomeration that occurred in a domestic commercial-scale circulating fluidized bed boiler. Solid refuse fuel (SRF) was fed into the target facility to produce electricity. Agglomeration occurred in the combustor and cyclone during commercial operation. The bed material, clinkers produced in the combustor and cyclone, and boiler ash were collected, and components that are known to cause agglomeration were analyzed. Additionally, the possibility of slagging and fouling formation was predicted using components obtained by XRF analysis. The melting temperature of the bed material was decreased by complex reactions of low-boiling-point metal, alkaline metal and sulfur, and chlorine components. Then, agglomeration was generated because the bed material and ash were melted and combined. Basicity (B/A), which can lead to slagging, was estimated to be above 1.0 (reference 0.5 < B/A < 1.0). The boiler ash had a basicity of 1.83. The slag viscosity index (SVI) was estimated to be between 18.83 and 49.78 (reference 65 < SVI < 72). The boiler ash and combustor clinker had 3.30 and 4.40 total alkali (TA) values, respectively (reference 0.3 < TA < 0.4). This condition determined that slagging and fouling formation easily progressed. This result is expected to be utilized as data for preventing agglomeration formation and clinker generation.
        47.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Fossil fuel combustion generates large amount of green house gas and it was considered major emission source causingglobal warming. For reducing green house gas, renewable energy resources have been emerged as an alternative energy.Among those resources, waste has been considered major resource as one of renewable energy, but it has been not utilizedsufficiently. In Korea, there are lots of efforts to utilize sewage sludge as one of renewable energy resources due to wasteto energy project of government. In this paper, sewage sludge was utilized as main fuel in order to recover heat energysource using oxy-fuel combustion in 30KWth circulating fluidized bed (CFB) pilot plant. Firstly, basic characteristics ofsewage sludge were analyzed and fuel feed rate was calculated by stoichiometry oxygen demand. For producing 30kwthermal energy in pilot plant, the feeding rate of sewage sludge was calculated as 13kg/hr. In oxy-fuel combustion, oxygeninjection rate was ranged from 21% to 40%. Fluidized material was more suitably circulated in which the rate of U/Umfwas calculated as 8 at 800oC. Secondly, Temperature and pressure gradients in circulation fluidized bed were comparedin case of oxy and air combustion. Temperature gradients was more uniformly depicted in case of 25% oxygen injectionwhen the value of excess oxygen was injected as 1.37. Combustion efficiency was greatest at the condition of 25% oxygeninjection rate. Also, the flue gas temperature was the highest at the condition of 25% oxygen injection rate. Lastly,combustion efficiency was presented in case of oxy and air combustion. Combustion efficiency was increased to 99.39%in case of 25% oxygen injection rate. In flue-gas composition from oxy-fuel combustion, nitrogen oxide was ranged from47ppm to 73ppm, and sulfur dioxide was ranged from 460ppm to 645ppm.
        48.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        In this study, a cold model of a circulating fluidized bed is developed and tested for designing a char combustor. This study has been carried out to investigate effects of the solid circulation rate and superficial gas velocity on the hydrodynamic characteristics in a circulating fluidized bed. Solid holdup and pressure drop in the riser increases with the increase of solid circulation rate, but decreases with increasing superficial gas velocity. The solid holdup in the dense region increases with increasing solid circulation rate at lower gas velocities, whereas it is independent of solids circulation rate at higher gas velocities.
        49.
        2008.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        가공이나 저장 중 쉽게 산화하는 특성을 갖는 ascorbic acid의 안정성을 확보하기 위해 Zein-DP와 HPMC-FCC를 코팅제로 유동층 코팅을 실시하여 ascorbic acid의 저장기간을 예측하고자 하였다. 단분자층 수분함량은 BET식보다 GAB식이 높은 유의성을 나타내었으며, 등온흡습곡선은 ascorbic acid 분말을 제외한 유동층 코팅된 분말의 경우 sigmoid 형태를 나타내었다. 등온흡습곡선의 적합도는 Halsey, Caur
        52.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        The advantage of CFBC(Circulating fluidized bed combustor) is that it can apply to various fuel sources including the lower rank fuel and remove SOx by means of direct supply of limestone to the combustor without additional desulfation facility. In this paper, we denote characteristics of fly and bed ash to reuse finer limestone usually abandoned(used spec[Coarse LS] 0.1mm under 25%, new spec[Fine LS] 0.1mm under 50%). According to the results, the chemical composition of fly ash was as follows; SiO2 40.8%, Al2O3 31.9%, CaO 10.7%, K2O 4.46% in the case of coarse limestone and SiO2 41.1%, Al2O3 31.3%, CaO 10.9%, K2O 4.66% in the case of fine limestone. The chemical composition of bed ash was as follows; SiO2 54.2%, Al2O3 33.1%, CaO 1.56%, K20 4.34% in the case of coarse limestone and SiO2 53.8%, Al2O3 32.6%, CaO 2.21%, K2O 4.45% in the case of fine limestone. It showed that there was no significant change in chemical composition. And it is conformed that there was no significant change in particle size and shapes.
        53.
        2004.10 KCI 등재 서비스 종료(열람 제한)
        The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized TiO2 and fluidized bed reactor. Immobilized TiO2(length: 1~2 mm, width: 1~3 mm, thickness: 0.5~2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, H2O2 and anion additives. (NO3-, SO42-, Cl-, CO32-) The results showed that the optimum dosage of the immobilized TiO2 were 87.0 g/L. Initial removal rate of RhB of the immobilized TiO2 was 1.5 times higher than that of the powder TiO2 because of the adsorption onto the surface of immobilized TiO2. In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.
        54.
        2003.12 KCI 등재 서비스 종료(열람 제한)
        The photocatalytic oxidation of Rhodamine B (RhB) was studied using immobilized TiO2 and fluidized bed reactor. Immobilized TiO2 onto GF/C was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, air flow rate and anion additives (NO3-, SO42-, Cl-, CO32-) competing for reaction. The results showed that the optimum dosage of the immobilized TiO2 was 40.0 g/L. Initial removal rate of immobilized TiO2 was expressed Langmuir - Hinshelwood equation.
        56.
        2002.10 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 800℃ and in limestone, that was at 850℃ or 900℃. Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.
        57.
        1999.08 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate capability of dyeing wastewater treatment for 3 type reactors. These reactors were Packed Bed Reactor(PBR), Fluidized Bed reactor(FBR) and Moving Media Complete Mixing Activated Sludge reactor(MMCMAS). Experiments of PBR and FBR were performed by various packing ratios and organic loading rates, experiments of MMCMAS were performed by various organic loading rates In order to obtain SBOD_5 removal efficiencies of more than 90%, the F/Mv ratios of PBR, FBR, MMCMAS were 0.11 ㎏BOD/㎏MLVSS·d, 0.12 ㎏BOD/㎏MLVSS·d, and 0.37 ㎏BOD/㎏MLVSS·d, respectively. So MMCMAS system which has more active microorganisms showed better capability of organic removal and also stronger dynamic and shock loadings than those of PBR and FBR. In PBR and FBR, the media packing ratio of 20% showed better performance of organic matters removal effciencies than 10% and 30%, but sludge production rate at media packing ratio of 30% was relatively lower than that of 10% and 20%. When more than 90% organic matters removal efficiency was obtained, the ratios of attached biomass to total biomass at PBR, FBR, MMCMAS were 89∼99%, 87∼98%, and 54∼80%, respectvely. The ratio of attached biomass to total biomass was low in MMCMAS. This was formation of thin biofilm due to shear force between rotating disc and water. The average sludge production rates(㎏VSS/㎏BODrem.) of PBR, FBR and MMCMAS were 0.20, 0.29 and 0.54, respectively.
        58.
        1999.02 KCI 등재 서비스 종료(열람 제한)
        Process intensification without any increase in bed requires the exploitation of fluid mechanical phenomena as the basis for elegant solutions to the process engineering problems which result from the need to retain and control the immobilized biomass, and for biomass recovery. The fluidized bed biological reactor provides a solution to these needs. The wastewater treatment characteristics of the fluidized bed was filled with sand media. Indirect aeration were studied experimentally. The researcher was filled with sand particle size(0.60∼0.42mm) in three reactors with different section area(A)/height(H), in the state BOD loading 4.5㎏-BOD5/㎥·d, and under the fixed state of hydraulic retention time for around 32 minutes.
        59.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study were to investigate the characteristics of desulfurization under different experimental conditions and the effects of desulfurization in a fluidized bed combuster installed with the screen. The experimental results were as follows ; First, as the height of fluidized bed combustor becomes higher, the concentrations of SO_2 mainly increased and sulfur retion of paper sludge was higher than that of natural limestone. Second, the desulfurization by natural limestone occurred at in-bed and the desulfurization by paper sludge occurred in the whole of fluidized bed combuster. In additiion, we identified calcium sulfate by the analysis of SEM and XRD. Third, screen at splash region increased sulfur retention 2∼5%, air velocity and anthracite fraction had a little effect on the sulfur retention.
        60.
        1997.06 KCI 등재 서비스 종료(열람 제한)
        It has been studied that combustion and the production of air pollution of anthracite - bituminous coal blend in a fluidized bed coal combustor. The objects of this study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and imported high calorific bituminous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010㎉/㎏ and the imported high grade bituminous coal with heating value of 6,520㎉/㎏. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300scfh which was the fastest. It has been found that O_2 and CO_2 concentration were reached steady state at about 100 minute. It has been found that O_2 concentration decreased and CO_2 concentration increased as the height of fluidized bed increased. It was found that splash zone was mainly located from 25㎝ to 35㎝ above distributor. Also, as anthracite fraction increased, the mass of elutriation particles increased, and CO_2 concentration decreased. As air flow rate increased, O_2 concentration decreased and CO_2 concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approximately high in the case of fine particles. As anthracite fraction and air flow rate increased, elutriation ratio increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was increased. Regardless of anthracite fraction, size distribution of bed material from discharge was almost constant. Over bed temperature 850℃ and excess air 20%, the difference of combution efficiencies were little. It is estimate that the combustion condition in anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 850℃, the excess air 20%.
        1 2 3 4