검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 367

        42.
        2018.04 구독 인증기관·개인회원 무료
        A parametric study was carried out to gain an insight about structural performances considering abnormal behavior effects in high strength steel pipe strut system. Six load cases were considered as undesirable deflections of strut structures, which are basic load combination, excessive excavation situations, impact loading effects, additional overburden loads, load combinations, and 50% reduction of strut length. Subsequent simulation results present various influences of parameters on structural performances of the strut system. Based on the results, we propose methods to prevent unusual behaviors of pipe-type strut structures made of high strength steels.
        43.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is a well known that concrete is strong for compression and weak for tension. For reinforcing the weakness and improving the performance about concrete, various methods are used. Fiber reinforced concrete that is one of them has been investigated in this study. The function of fiber in concrete is to improve the stress strain relation and toughness, crack control. It’s applied from normal strength concrete to ultra-high performance concrete. But it is essential to disperse fiber uniformly and to prevent aggregation of fiber in concrete, in order that fiber reinforced concrete show the sufficient performance. The various properties of fiber affect the essential properties, for instance, length and diameter of fiber, source, etc. So, this study evaluated the ultra-high performance concrete with mixed in composite fiber.
        4,000원
        47.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.
        4,000원
        48.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the mechanical and metallurgical properties of the gas metal arc welding. According to flux cored arc welding parameters during welding ATOS80, improving the working conditions of the welding industry to use high strength steel ATOS80 we propose to. Weld test is the tensile strength, yield strength, elongation, hardness, brittleness, such as macro-structure check of the mechanical properties and the weld, the microstructure inspection, defects of the weld subjected to radio-graphic inspection and tissue after welding the test pieces according to the condition variable comparative analysis was investigated by the state.
        4,000원
        49.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fracture of mechanical structure is caused by internal cracks in the material. Particularly, the fracture can also be seen to happen under the stress that is lower than yield strength in case of high strength steel because of the crack happening from the defect inside the material. In this study, high strength steel with four holes near the center crack were designed by angle and fatigue experiments, and the simulation analyses to verify the experimental results were carried out. As the results of this study, the crack growth rates are shown to be 0.000485, 0.000434 and 0.000422 respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. The maximum deformation energies become 0.0848mJ, 0.0603mJ and 0.0582mJ respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. It is thought that this study result can be utilized as the basic data at the study on the material existing with the defects of crack and hole.
        4,000원
        51.
        2017.04 구독 인증기관·개인회원 무료
        This study investigates the flexural shear strength of ultra high performance concrete I-girder. The effect of aspect ratio on the flexural - shear strength of UHPC was analyzed using finite element analysis. The UHPC I-type girder was modeled using 3D shell elements and analyzed using geometric and material nonlinear analysis. The boundary condition is simple support condition and a displacement load is applied to the center of the upper flange. The results shows that shear strength decreased as the aspect ratio increased and the bending-shear failure of UHPC I-girder does not occur even at larger moment than ordinary concrete due to the cross-linking action of steel fiber.
        52.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Prestress is a reinforcement method to control crack due to moment on concrete girders with low tensile strength. In the existing literature, it is mentioned that prestress for ordinary concrete affects not only crack control but also shear strength enhancement. As the construction material improves, UHPC(Ultra-HIgh Performance Concrete) with excellent strength and ductility has been developed by combining ultra-high strength concrete and steel fiber. However, study on the effect of prestress on the shear strength of UHPC with different material properties from ordinary concrete is lacking. Therefore, in this paper, the effect of prestress on the shear behavior of UHPC I-girder is studied by finite element analysis. As a result of the analysis, it has been confirmed that the prestress increases crack strength and shear strength of UHPC.
        3,000원
        54.
        2016.11 구독 인증기관·개인회원 무료
        혐기성 Membrane Bioreactor 공정은 기존 단점을 보완하고 고-액을 효과적으로 분리시켜 혐기슬러지를 소화조로 재순환시켜 미생물 체류시간을 연장시킬 뿐만 아니라 슬러지 멤브레인 폐쇄공정 속에서 취급되기 때문에 악취발생도 최소화되는 장점이 있다. 본 연구에 적용된 UF 여과막 결합 혐기소화공정에서 사용된 음폐수 유입 pH는 4.12, TS 12%이었다. UF 여과 분리막은 운전 335일 이후부터 가동시켰으며, flux는 15~20 LMH, TMP는 1~3 kgf/㎠(In-Out), 교차여 과속도는 1~3 m/sec로 운전하였다. 유입수의 TCOD와 SCOD의 는 각각 113 ± 29, 62 ± 8 g/L로 변화될 때, 유출수의 TCOD, SCOD는 각각 25 ± 6, 12 ± 3 g/L이었다.
        55.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In korea, only small amount of nonstructural lightweight concrete is being used through indirect effects such as heat insulation property and soundproofing rather than structural elements due to lack of structural lightweight aggregates and lack of understanding about lightweight concrete development, etc. That`s why structural lightweight concrete to reduce weight has not been put to practical use. This study is a part of high strength lightweight aggregate concrete researches using lightweight aggregates and the purpose of this study is to find out the basic physical characteristics and tension cracking fracture characteristics of lightweight concrete. Crack Mouth Opening Displacement is measured through 3 point flexure experiment about notch beam. Load-CMOD characteristics are examined through rules of countries, characteristics of lightweight concrete and tension cracking fracture experiments. The degree of tensile characteristic alteration according to size changes of specimen and the characteristics about crack surface are analyzed. The changes of softening curve are analyzed and fracture energy is drawn through inverse analysis by the obtained Load-CMOD curve. To decide fracture energy and analysis parametric, inverse analysis is conducted and Ant Colony Method is conducted for optimization and then a way to find out optimal parameterization fracture energy is suggested.
        4,000원
        56.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Measuring the exact cable tension force is important to cable supported bridge under construction and on service. This study was planned to propose EM(electro-magnetic) sensor-based method for measuring the tension force of MS(multi-strand) cable in cable-stayed and extradosed bridge. The tension force in each strand is the same due to MS cable construction using Iso-tensioning system. Therefore, In this prosed method, EM sensor was installed directly at a strand and the measurement model was established for estimating the tension force of strand via EM sensor by experiments. The measurement model was derived from the relation of tension force and magnetic permeability. Also, the magnetic permeability is shown to be different according to the magnetization characteristic of 1860MPa and 2200MPa high-strength strand. The difference is increased as tension force increases. Additional experiment was conducted to verify the measurement model. As a result, the distribution of strand tension calculated upon the EM sensor is similar to those of tension measured by load cell. This proposed approach can be an effective tool for monitoring and measuring the cable force of MS cable.
        4,000원
        58.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix Ⅱ. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.
        4,000원
        59.
        2016.04 구독 인증기관·개인회원 무료
        The clamping of torque shear high strength bolt is induced when the pin-tail is broken. However the tension forces induced shank of the bolt do not be known by now. This study focused to develop a quantitative method to identify the induced tension by analyzing the electric energy of which electric torque wrench (rpm 20) was applied to high strength bolt at the break of pin tail. Based on this co-relation between tension and accumulated current, the regressive analysis was derived. The error rate between tension and accumulated current was 5.06%.
        60.
        2016.04 구독 인증기관·개인회원 무료
        The clamping of torque shear high strength bolt is induced when the pin-tail is broken. However the tension forces induced shank of the bolt do not be known by now. This study focused to develop a quantitative method to identify the induced tension by analyzing the electric energy of which electric torque wrench was applied to high strength bolt at the break of pin tail. Based on this co-relation between tension and accumulated current, the regressive analysis was derived. The error rate between tension and accumulated current was 2.24%.
        1 2 3 4 5