검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,620

        701.
        2021.10 KCI 등재 서비스 종료(열람 제한)
        This study aimed to investigate the effects of soil amendment (heat-expanded clay and active carbon) and planting of Dendranthema zawadskii var. latilobum on the remediation of salt-affected soil and the plant growth under high calcium chloride (CaCl2) concentration. The experimental group comprised treatments including Non treatment (Cont.), heat-expanded clay (H), active carbon (AC), planting (P), heat-expanded clay+planting (H+P), active carbon+planting (AC+P). A 200 mL solution of CaCl2 at a concentration of 10 g·L-1 was applied as irrigation once every 2 weeks. Compared to the Cont., the incorporation of the ‘heat-expanded clay’ amendment decreased electrical conductivity of the soil leachate and cation exchange capacity, whereas the growth of Dendranthema zawadskii var. latilobum was relatively increased. These results suggest that the combination of ‘heat-expanded clay’ amendment and planting will mitigate negative effect of de-icing salts and improve plant growth in salt-contaminated roadside soils.
        702.
        2021.08 KCI 등재 서비스 종료(열람 제한)
        The physicochemical properties of soil and the yield and quality of rice (Oryza sativa L. cv. Sailmi) were assessed using Italian ryegrass (Lolium multiflorum Lam. cv. Kowinearly)-rice double cropping systems in the paddy fields at Goseong and Miryang in southern Korea. The average temperatures during the ripening period were approximately 1 °C higher than the optimal temperature for rice ripening and the sunshine duration was reduced by frequent rainfall. Consequently, it was slightly below the optimal conditions required for rice ripening. In the soil at Goseong, winter Italian ryegrass cropping increased the pH, electrical conductivity, and the contents of organic matter, total nitrogen (T-N), available P2O5, K, Ca, and Mg than winter fallowing. Particularly, the contents of T-N and available P2O5increased significantly. In the soil at Miryang, Italian ryegrass slightly increased the electrical conductivity and the T-N, Mg, and Na contents. Therefore, winter Italian ryegrass cropping improved the physicochemical properties of paddy soils; however, Italian ryegrass-rice double cropping slightly reduced the culm length at both Goseong and Miryang, without markedly changing the panicle length or number compared to fallow-rice cropping. Furthermore, at Goseong, Italian ryegrass-rice double cropping slightly decreased the spikelet number and milled rice yield, and increased the ripened grain rate; however, at Miryang, contrasting results were observed. In addition, fallow-rice cropping revealed no differences in the head rice or opaque rice rates. The protein content was slightly increased in Italian ryegrass-rice double cropping, without significant changes in the amylose content or Toyo value, compared to that in fallow-rice cropping. The peak and breakdown viscosities were slightly decreased. These results indicate that winter Italian ryegrass cropping might alter rice taste but may not exhibit remarkable negative effects on rice cultivation. Therefore, Italian ryegrass-rice double cropping system is recommended for paddy fields in southern Korea. Nevertheless, to increase the rice yield and quality, fertilization standards for rice cropping that consider the changes in the T-N and organic matter contents in paddy fields caused by winter Italian ryegrass cropping need to be established.
        703.
        2021.08 KCI 등재 서비스 종료(열람 제한)
        Soil water enters the atmosphere via evapotranspiration, where it transforms into atmospheric water vapor and plays important role in the surface-atmosphere energy exchange. Soil conditions have a direct influence on the effective rainfall, and initial soil moisture conditions are important for quantitatively evaluating the effective rainfall in a watershed. To examine the sensitivity of the initial saturation to hydrologic outflow, a two-dimensional distributed FLO-2D hydrologic model was applied to a small watershed. The initial saturation was set to 0.3, 0.5, and 0.7 and the obtained results were compared. The Green-ampt model was chosen to calculate the penetration loss. Depending on the initial soil moisture, the peak flow rate varied by up to 60%, and the total water volume in the watershed by approximately 40%.
        704.
        2021.05 KCI 등재 서비스 종료(열람 제한)
        Soil microorganism activity in an agricultural field is affected by various factors including climate conditions, soil chemical properties, and crop cultivation. In this study, we elucidate the correlation between microorganism activity and agricultural environment factors using the dehydrogenase activity (DHA) value, which is one of the indicators of soil microbial activity. As a result, the various factors noted above were related to the DHA value. Annual rainfall, soil Mg2+, bacterial and fungal diversities, types of crops, developmental stages, seasons, and cultivation status were highly correlated with the DHA value. Furthermore, next-generation sequencing (NGS) analysis was used to identify that the type of crop affected soil microbial compositions of both bacteria and fungi. Soil used for soybean cultivation showed the highest relative abundance for Verrucomicrobia, Planctomycetes, and Acidobacteria but Actinobacteria and Firmicutes had the lowest relative abundance. In the case of soil used for potato cultivation, Actinobacteria had the highest relative abundance but Proteobacteria had the lowest relative abundance. Armatimonadetes showed the highest relative abundance in soil used for cabbage cultivation. Among the fungal communities, Mortierellomycota had the highest relative abundance for soybean cultivation but the lowest relative abundance for cabbage cultivation; further, Rozellomycota, Chytridiomycota, and Cercozoa had the highest relative abundance for cabbage cultivation. Basidiomycota had the highest relative abundance for potato cultivation but the lowest relative abundance for soybean cultivation.
        705.
        2021.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the growth of Dendranthema zawadskii in damaged soils when they are treated with improvement agents. The treatments consisted of a control (unamended field soil) and the application of a loess ball of 1 cm to the field soil. According to the degree of damage the de-icing agent had caused, the soils were divided into 3 areas (based on the yellowing of Pinus densiflora for. multicaulis in soil surveys): H (high saline), M (medium saline), and L (low saline). A total of six treatments were performed: D. zawadskiia plant without soil amendment (H; high saline soil, M; medium saline soil, L; low saline soil), and a D. zawadskiia plant with loess ball on the soil surface (H.L; high saline soil with loess ball, M.L; medium saline soil with loess ball, L.L; low saline soil with loess ball). The results showed that D. zawadskiia growth went from highest to lowest in the order: M.L > L.L > M > L > H.L > H. Plant growth results showed that soils treated with soil amendments (loess ball) were better for D. zawadskii growth than untreated soils.
        706.
        2021.02 KCI 등재 서비스 종료(열람 제한)
        Soil conservation management is necessary for sustainable agriculture, in highland areas, and cover crops are one of the best soil conservation methods for slopes. In this study, we evaluated the effects of alfalfa cultivation on maize production, as well as soil conservation and quality. There was an outstanding soil conservation effect with alfalfa cultivation in the fallow and maize growing seasons. In particular, alfalfa cultivation reduced soil loss by up to 98% compared with bare field. It also increased the activities of soil microorganisms and the supply of organic matter. Maize production with alfalfa cultivation showed no significant differences in yield. In conclusion, alfalfa is an advantageous perennial cover crop in highland agricultural slope areas, which can have positive effects on soil quality and conservation, as well as maize production.
        707.
        2021.01 KCI 등재 서비스 종료(열람 제한)
        Herb has been categorized as a special plants from the beginning of human history and used in different medical systems in different cultures. This research has classified soil into 6 kinds that have diverse elements to see to which various kinds of savory(satureja hortensis) adapt well, experimenting from sowing to flowering for around 13 weeks, and also divided indoor conditions to get the result below. In conclusion, growth status of savory depending on the kinds of soil suggest that in indoor conditions the savory if planted in ⑤ bed soil compounded with saprolite and poultry manure grew better than any other condition. On the other hand, the growth status was bad in ① masato, ② clay, ④ bed soil mixed with saprolite, and ⑥ bed soil mixed with clay conditions. Though you can see the immediate effect of soil on the growth of savory, I’d like to reveal the details of how elements of savory operate in which kind of soil and outdoor conditions the goal of this research, in the next research.
        708.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        This study performed to conduct a test to increase the amount of appropriate organic matter input to organic upland soil, soil fertility, and its effect on the chemical changes and yield of corn in soil due to organic use. The pH level of the T1, T5, and T6 treatment zones where livestock excreta was used was raised to 6.0-6.5, the optimal range of the soil in Korea, and it was confirmed that the pH value was appropriate. Electrical Conductivity (EC), organic content (OM), and total nitrogen (T-N) were also identified as a trend of continuous increase. The quantity of corn gradually increased from 74.1% to 96.4% over the four-year period with the use of organic materials compared to the beginning of the test, and the utilization efficiency of nitrogen has also increased. The results of the study were found to have been able to examine the increase in quantity and changes in soil chemistry through crop cultivation using organic materials such as natural materials, green manure crops , and livestock manure compost, and it is also believed that the changes due to various factors such as soil environment, soil microbes, and climate conditions need to be made through continuous research.
        709.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        최근 토양과 지하수에서도 미세플라스틱이 발견되어 미세플라스틱 환경오염 관련 연구의 중요성이 크게 대두되고 있다. 주로 μm – nm의 작은 입자로 존재하는 점토광물과 금속산화광물은 표면적이 넓어 미세플라스틱에 대한 흡착력 등 화학 반응도가 매우 높기 때문에, 광물표면 상호작용은 토양과 지하수 환경 내 미세플라스틱의 거동을 결정하는 중요한 역할을 할 수 있다. 따라서, 광물과 미세플라스틱 간의 상호작용에 대한 환경광물학 연구는 미세플라스틱 거동 예측 기술개발 및 오염대책 마련에 핵심이 되는 연구분야라 할 수 있다. 광물표면과 미세플라스틱(특히, 나노플라스틱) 연구에는 분자-나노수준의 분석기술이 요구된다. 이번 기술보고에서는 나노그람(=10-9 g) 수준의 질량 변화를 실시간으로 측정할 수 있는 초정밀 분석기기로, 광물 표면에 흡·탈착되는 미세플라스틱 및 나노플라스틱의 미세한 질량 변화를 측정할 수 있는, 수정진동자미세저울(quartz crystal microbalance, QCM)을 소개한다. QCM 작동원리를 소개하고, 대표적인 QCM 연구결과와 기존 컬럼 실험과의 장단점을 비교하여 미세플라스틱 연구에 QCM 활용 가능성을 논의한다.
        710.
        2020.05 KCI 등재 서비스 종료(열람 제한)
        Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.
        711.
        2020.04 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to analyze seasonal variations of de-icing salt ions harvested from soils and plants according to salt damage of Pinus densiflora f. multicaulis, a evergreen conifer, on roadsides. Pinus densiflora f. multicaulis was divided into three groups referred to SD, ND, and WD (serious salt damage (SD) = 71 100%, normal salt damage (ND) = 31 70%, and weak salt damage (WD) = 0 30%) based on the degree of visible foliage damage, and measured acidity (pH), electrical conductivity(EC), and de-icing salt ions (K+, Ca2+, Na+, and Mg2+) harvested from soils and plants. The results indicated that acidity, electrical conductivity, and de-icing salt ions of soils and plants were significantly affected by seasonal variation and salt damage. In addition, a strong positive liner relationship was observed in plants between the concentration of de-icing salts and salt damage in spring, while the relationship among seasonal variation and salt damage in soil were not significant. The results from this study has important implications for the management of conifer species in relation to salinity and roadsides maintenance.
        712.
        2020.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to analyze the soil environment of urban neighborhood parks and to use them as basic data for evaluating the ecological functions of urban parks such as groundwater regeneration, flood control, microclimate regulation, adsorption and purification. The landscape design criteria were generally evaluated as advanced, and further monitoring and studies are needed to evaluate the various ecological functions. It is also necessary to improve the phosphoric acid and nitrogen contents, which tended to be low. In addition, continuous monitoring is needed to assess the proper soil environment according to the biological species, and to evaluate the ecological functions. The results of this study can be used to evaluate the groundwater recharge of urban parks. In particular, when the land of the neighboring park is used for various purposes, the level of access of the user may be increased. Therefore, factors that may adversely affect the user's health, such as heavy metals and organic matters, should be selected and selected as management criteria. In addition, follow-up studies considering fertilization standards suitable for trees and growth of introduced vegetation, etc. are needed urgently to improve the soil environment.
        713.
        2020.02 KCI 등재 서비스 종료(열람 제한)
        고랭지 농업(해발고도 400 m이상)은 주로 해발고도가 높은 산지의 경사지에서 이루어지고 있고, 대부분 작물 재배기간이 5월부터 9월까지(5개월)로 짧아, 나머지 7개월은 토양 피복이 이루어지지 않은 상태로 있어 토양유실 가능성이 높다. 이러한 문제점을 개선하기 위해 본 연구에서 고랭지 경사도 55% 라이 시미터(Lysimeter)에서 경관성이 높은 구절초를 식재하여 토양 유실 저감 효과를 규명하였다. 관행구로 나지(Control, TC) 대비 식재 밀도에 따라 구절초 적은 그룹(T1, 40주), 구절초 많은 그룹(T2, 70주)로 하여 총 3처리를 두었다. 구절초의 재배기간 (6-10월) 피복율을 조사한 결과 대조구인 나지상태인 TC는 0% 의 피복율인데 반해 구절초 식재한 T1 처리구는 43-59%의 피복율을 보였으며, T2 처리구는 63-81%로 경사지 토양을 피복시 키는 효과가 가장 좋았다. 재배기간 평균기온의 5개월 평균은 평균기온범위는 16.1℃로 나타났으며 강우량은 1207.9 ㎜로 나 타났다. 재배기간 동안 평균적인 지표유출량 경감효과는 TC 처 리 대비 구절초 피복처리구인 T1 처리구는 71%, T2처리구는 76%로 우수하였다. 또한, 토양유실량의 경우 TC보다 T1처리구 의 경우 84%, 재색밀도가 높은 T2 처리구의 경우 98%의 토양유실 감소효과를 보였다. 따라서, 고랭지 경사지에 영년생 자원식물 중 경관성이 뛰어난 구절초를 식재함으로서 경사지 토양유실을 경감시킬 수 있고, 부가가치가 높은 고소득작물로 활용 가능할 것으로 기대된다.
        714.
        2020.01 KCI 등재 서비스 종료(열람 제한)
        The determination of soil characteristics is important in the simulation of rainfall runoff using a distributed FLO-2D model in catchment analysis. Digital maps acquired using remote sensing techniques have been widely used in modern hydrology. However, the determination of a representative parameter with spatial scaling mismatch is difficult. In this investigation, the FLO-2D rainfall-runoff model is utilized in the Yongdam catchment to test sensitivity based on three different methods (mosaic, arithmetic, and predominant) that describe soil surface characteristics in real systems. The results show that the mosaic method is costly, but provides a reasonably realistic description and exhibits superior performance compared to other methods in terms of both the amount and time to peak flow.
        715.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.
        716.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to compare the community structure and biodiversity of epigeic spiders between pear fields cultivated by integrated pest management (IPM) and organic methods. This is the first study of this kind to be conducted in Korea. Eighty-four spider species from 22 families were identified among the collected 2,489 arthropods, with 754 individuals being sampled from IPM fields and 1,735 individuals from organic fields. Generally, Theridiidae, Linyphiidae, Lycosidae, Agelenidae, Gnaphosidae, and Salticidae were the dominant spider families in the pear orchard regardless of the farming methods, and species richness and abundance were higher in organic fields than in IPM fields. The dominant species were the wolf spiders (Lycosidae) and stone spiders (Gnaphosidae), and their cumulative abundance was 70.7% in IPM fields and 72.7% in organic fields. The community structure between organic and IPM fields was heterogeneous, with a 45% similarity level. Biodiversity, species richness, abundance, and species diversity index were higher in organic fields than in IPM fields, and significantly different between the farming methods. Seasonal fluctuations in biodiversity were similar in both IPM and organic fields. The species richness and species diversity index increased and the abundance decreased in the second half of the cultivation period. This study on the community structure and biodiversity of epigeic spiders, which form one of the most important predator groups, will provide principal ecological and faunistic information required to maintain the biodiversity of useful arthropods in agricultural ecosystems and help implement sustainable agriculture based on the active use of natural enemies.
        717.
        2019.08 KCI 등재 서비스 종료(열람 제한)
        Highland farming is agriculture that takes place 400 m above sea level and typically involves both low temperatures and long sunshine hours. Most highland Chinese cabbages are harvested in the Gangwon province. The Ubiquitous Sensor Network (USN) has been deployed to observe Chinese cabbages growth because of the lack of installed weather stations in the highlands. Five representative Chinese cabbage cultivation spots were selected for USN and meteorological data collection between 2015 and 2017. The purpose of this study is to develop a weight prediction model for Chinese cabbages using the meteorological and growth data that were collected one week prior. Both a regression and random forest model were considered for this study, with the regression assumptions being satisfied. The Root Mean Square Error (RMSE) was used to evaluate the predictive performance of the models. The variables influencing the weight of cabbage were the number of cabbage leaves, wind speed, precipitation and soil electrical conductivity in the regression model. In the random forest model, cabbage width, the number of cabbage leaves, soil temperature, precipitation, temperature, soil moisture at a depth of 30 cm, cabbage leaf width, soil electrical conductivity, humidity, and cabbage leaf length were screened. The RMSE of the random forest model was 265.478, a value that was relatively lower than that of the regression model (404.493); this is because the random forest model could explain nonlinearity.
        718.
        2019.08 KCI 등재 서비스 종료(열람 제한)
        The adsorption and leaching characteristics of five ionic pesticides including four acidic pesticides (2,4-D, dicamba, MCPA, and MCPP) and one amphoteric pesticide (imazaquin) in agricultural soils were investigated. Soils around spring waters that were heavily affected by pesticide run-off and soils around wells considering the regional characteristics in Jeju Island were collected at 24 stations. The Freundlich constant, KF value, which is a measure of the adsorption capacity, decreased in the order of 2,4-D > MCPA > MCPP > dicamba > imazaquin. The adsorption capacity of these ionic pesticides decreased with increasing pH owing to the effects of ionization of pesticides and different ionizable functional groups of soils. The leaching of ionic pesticides in the soil column showed a reverse relationship with their adsorption in soils, namely, the ionic pesticides were leached more quickly for the pesticides with lower adsorption capacity. The groundwater contamination potential of the ionic pesticides was evaluated in the order of imazaquin > MCPA > MCPP > dicamba > 2.4-D according to the groundwater ubiquity score based on soil Koc and the half-life of the pesticide.
        719.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 Cosmic-ray 토양수분량 관측시스템 구축 시 필요한 검증 네트워크 설계 기법 개발에 목적을 두고 유전율식(dielectric constant) 장비인 Frequency Domain Reflectometry (FDR)와 연계하여 Cosmic-ray 검증시스템을 구축·운영하였다. Cosmic-ray 검증시스템 평가에 필요한 시범지역은 기존 계측 장비와의 연계성과 다양한 수문자료의 활용성을 고려하여 설마천 유역에 구축하였다. 시범지역은 Cosmic-ray 장비와 FDR 센서(10개소)로 구축하였으며 2018년 7월부터 현재까지 운영되고 있다. 본 연구에서는 검증시스템의 신뢰도를 높이기 위해 코어법(soil core sampling method)을 통해 산출한 용적수분함량(volumetric water content)을 유전율식 장비와 정기적으로 검증하였다. 연구기간 중 수행한 코어법과 FDR 센서를 검증한 결과, 두 자료의 통계량이 bias=-0.03 m3/m3과 RMSE=0.03 m3/m3의 유의한 값을 보였다. 또한 연구기간 동안 FDR 센서의 시계열 특성은 모든 강우에 정상적으로 반응하였다. 그러나 일부 지점에서는 낙엽 및 캐노피의 차단과 상부사면의 유출 등으로 인해 상이한 특성을 보였다. Cosmic-ray 영향원(influence line) 내 FDR 센서의 대표성 분석은 시간 안정성 해석법(temporal stability analysis, TSA)을 이용하여 토심별(10 cm, 20 cm, 30 cm, 40 cm)로 분석하였다. 10개소에 대한 토심별 토양 수분량의 대표성을 TSA로 분석한 결과, 토심 10 cm에서는 FDR 5, 토심 20 cm에서는 FDR 8, 토심 30 cm에서는 FDR 2, 토심 40 cm에서는 FDR 1에서 가장 우수한 대표 특성을 보였다. 본 연구의 시범지역 운영 기간이 짧다는 한계는 있지만 지금까지의 분석 결과를 토대로 하여 볼 때, Cosmic-ray 관측시스템 구축 시에는 검증 장비로는 유전율식을 활용하고, Cosmic-ray 영향원 내 토양수분량의 대표성 분석은 TSA 방법으로 수행하는 것이 바람직할 것으로 판단된다.
        720.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 최근의 토양통 개정 결과를 반영하여 제주도를 대상으로 새로운 수문학적 토양군 분류 방법을 제시하였다. 또한 제시한 수문학적 토양군 분류 방법은 기존의 수문학적 토양군 분류 방법과 비교하여 평가하였다. 이를 위해 본 연구에서 제시한 수문학적 토양군 분류 방법과 기존의 수문학적 토양군 방법들을 적용하여 제주도 전체 유역을 대상으로 CN 값을 산정하고 그 결과를 비교하였다. 그 결과를 정리하면 다음과 같다. (1) 2007년 이후 개정된 토양통을 기존 토양통과 비교한 결과, 토성은 43개의 토양통에서, 배수등급은 1개의 토양통에서, 투수속도는 15개의 토 양통에서, 불투수층 깊이는 26개의 토양통에서 변경된 것으로 확인되었다. (2) 개정된 토양통을 반영하여 제주도의 수문학적 토양군을 분류한 결과, 1987년의 분류 방법을 따를 경우에는 수문학적 토양군 C군(46.43%)이 가장 많이 나타나나, 1995년의 분류 결과에서는 B군(27.69%)이, 2007년의 분류 결과에서는 D군(35.82%)이, 본 연구에서 제시한 분류 결과에서는 B군(49.25%)이 가장 많이 나타나는 것으로 나타났다. (3) 본 연구에서 제시한 방법을 제주도 전체에 적용한 경우에 추정된 CN 값은 기존 방법에 의한 값보다 작은 것으로 나타났다. 이 결과는 기존 방법을 적용할 경우 CN 값이 과대 추정되었을 가능성을 제시하는 것이기도 하다.