검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        61.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        Electrochemical reductive extraction of tin from semiconductor plating process wastewater was experimented using synthetic wastewater. Copper and graphite plate were used as a cathode and an anode, respectively. The tin extraction could be optimized in pH 0.5 and polar space of 60 mm. The extraction rate of tin per minute was increased as current and initial tin concentration increased, and more than 87% and 97% of tin could be extracted within 80 minutes at 500 mg/L and 1,000 mg/L of initial tin concentration, respectively. The electrochemical reaction orders and kinetic coefficients were 1.24 ~ 1.26 and 0.004 ~ 0.006 (L/mg)(n − 1)min−1. The residual concentration of tin could be expressed as Ct= (Co −0.246+ 0.0012t)−4.065.
        62.
        2013.11 서비스 종료(열람 제한)
        가스화로에서 생산되는 합성가스를 이용한 메탄올 생산 공정은 고부가가치 연료화 기술로서 각광 받고 있다. 특히, 메탄올 생산에 적합한 H₂/CO비를 안정적으로 제공하기 위한 water gas shift(WGS) 반응은 합성가스내의 CO와 외부에서 공급된 증기와의 반응으로 인해 H₂와 CO₂의 농도가 증가하게 된다. 따라서 본 연구에서는 고발열량 폐기물 가스화를 통해 얻어진 합성가스를 WGS 반응을 통해 H₂/CO조성 제어를 함으로써 메탄올 전환 공정에 적용 가능한 운전조건을 도출해보았다. 본 연구에 사용된 WGS 촉매는 Fe₂O₃-Cr₂O₃을 구성성분으로 하고 있는 상용 촉매를 사용하였으며, 15 Nm3/h급 WGS 반응 장치를 이용하여 가스화로부터 발생된 합성가스를 활용한 WGS 반응 실험을 수행 하였다. 사용한 WGS 상용촉매는 H₂-TPR를 이용하여 400℃에서 환원에 의한 H₂흡수를 통해 환원 온도를 설정할 수 있었다. 본 실험 장치로부터 수행하여 얻어진 각 온도에 따른 CO 전환율은 대체로 실험실 규모 장치에서 수행한 WGS 반응 결과와 유사함을 알 수 있었다. 발열반응을 수반하는 WGS 반응 특성으로 인하여 안정적인 운용 및 최대 활성을 얻기 위한 반응 온도영역이 400~450℃임을 알 수 있었다. 최종적으로, 메탄올 전환 공정 조건인 H₂/CO조성이 2.0을 충족시키는 바이패스 비율은 0.23임을 도출 할 수 있었다.
        63.
        2013.11 서비스 종료(열람 제한)
        폐기물, 바이오매스 가스화를 이용한 전기 생산 시스템은 화석연료 대체 및 CO₂ 배출량 감소를 위한 잠재성이 매우 뛰어난 것으로 평가되고 있다. 특히 폐기물, 바이오매스 가스화 발전 시스템은 전기의 이용 및 접근의 용이성이 뛰어나므로, 중・소규모 지역에서 이용할 수 있는 훌륭한 대안이라고 할 수 있다. 따라서 시스템을 효율적으로 이용하기 위해서는 폐기물, 바이오매스 가스화 발전시스템의 운전특성을 파악하여 성능을 개선시키는 것이 필요하다. 본 연구에서는 폐기물을 원료물질로 하고, 공기를 산화제로 이용한 가스화를 통해 생산된 합성가스를 이용하여 가스엔진과의 연계를 통해 전기를 생산하는 시스템을 개발하고자 한다. 폐기물은 가스화기 상부에서 투입되었고 산화제인 공기는 가스화기 측면에서 투입되었으며, 반응된 가스는 상부로 배출되는 고정층 방식의 반응기를 이용하였다. 발열량이 약 3,300, 3,900 kcal/kg인 폐기물을 이용하여 가스화 시스템의 합성가스 생산 특성을 파악하였다. 3,300 kcal/kg의 발열량을 가진 폐기물의 가스화 결과, 합성가스 조성이 CO 0.2~3.7%, H₂ 3.6~7.1%, CH₄ 0.9~2.3%으로 나타났으며, 안정적인 가스화가 진행되지 않았다. 3,900 kcal/kg의 발열량을 가진 폐기물의 가스화 결과, 합성가스 조성이 CO 7.9~12.1%, H₂ 7.1~8.2%, CH₄ 2.8~3.7%이며 냉가스 효율은 약 60.1%으로 안정적인 가스화가 진행되었다. 따라서 실험에 이용한 고정층 가스화기는 최소 3,300~3,900 kcal/kg이상의 열량을 가진 폐기물을 이용해야만 합성가스의 안정적인 생산이 가능하고 가스엔진 연계 발전이 가능한 것으로 도출되었다.
        64.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        This work presents an experimental study of the influence of lifting velocity on cake formation during filtration. For design of hot gas cleanup system using ceramic filter reactor, the most important consideration is coating conditions of sorbent in filter surface (for example : lifting velocity, coating weight of sorbent, pulsing interval and removal effect for dechlorination and desulfurization). We studied the optimum operation condition as paticle size and lifting velocity using a ceramic filter reactor at 550oC. Based on the results obtained during cold and hot test, optimum lifting velocity in a ceramic filter reactor was selected 0.68 m/s. Also, the removal behaviour of the ceramic filter during filtration was studied using differential pressure. Optimum removal efficiency for dechlorination and desulfurization accomplished at differential pressure condition over 74 mmH2O.
        70.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at 3kg/cm2 whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure 5kg/cm2, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.
        77.
        2005.02 KCI 등재 서비스 종료(열람 제한)
        Statistical analysis between operating parameters and effluent quality on advanced wastewater treatment plant was performed. Through factor analysis four factors derived varimax rotation were selected each plant. Four components explained 80%, 82% of the total variance of the process, respectively. The components on MLE plant were identified in the following order:1) HRT increase and BOD load decrease by influent decrease, 2) Biomass, 3) SVI increase by internal return increase, 4) Microbial diversity by SRT increase. On A2O plant, we defined them as follows: factor 1, high MLSS by return rate increase, HRT increase by influent decrease; factor 2, biomass; factor 3, BOD of influent; factor 4 was relate to DO.
        1 2 3 4 5