검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 363

        62.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydro-forming design process of the sub-frame side members was studied using a high strength steel of 440 MPa in tensile strength. In the part design stage of the side member, the cross section analysis and the overall process design of the part shape were done. In the detailed simulation results, the maximum thickness reduction rate due to hydro-forming was predicted to be 13% and this was predicted to be a safe level without cracking. The end curvature was reduced to increase the stiffness of the part to design more secure parts and two types of grooves were added to the cross section and compared. The thickness reduction rates of the narrow and wide were improved by 18.6% and 15.6%, respectively when the narrow and wide grooves were added.
        4,000원
        63.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.
        4,200원
        64.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.
        4,000원
        65.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.
        4,000원
        66.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SUS hexagonal bar has been widely used to make many kinds of hexagonal bolt/nuts and fittings. Peeling machine is used to make lustrous and clean surface of SUS circular bar in order to remove rust and impurities from surface of raw SUS circular bar. Similarly, roll unit system is used to make SUS hexagonal bar from SUS circular bar with lustrous and clean surface. Roll unit system is mainly divided into two parts ; one is roll unit and the other is mold frame. The purpose of this study was to evaluate the structural stability of mold frame supporting roll unit with numerical analysis. As the numerical analysis result, higher structural stability was gradually shown in order of models 4, 2, 3 and 1. It was considered that the structural stability of this study was influenced by the decrease of mold frame size, especially height decrease.
        4,000원
        69.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.
        4,000원
        70.
        2018.04 구독 인증기관 무료, 개인회원 유료
        In this study, to develop the basis of damage prediction system for abutment type rigid-frame bridge, measurement data is generated by artificially expressing damage by Abaqus, a commercial structural analysis program, and applied to machine-learning. The rigid-rame bridge structural analysis model is expressed as closely as possible to the actual bridge condition considering the specification, damage expression, analysis method, boundary condition, and load. CNN(Convolutional Neural Network), one of the neural network algorithm, is used for machine-learning and accuracy is confirmed when there was no measurement error as a result of machine learning.
        3,000원
        71.
        2018.04 구독 인증기관 무료, 개인회원 유료
        Recently, the damage caused by typhoons and strong winds are increasing due to the world climate change. Considering the vulnerability of structure to strong wind disaster, in this study, we focused on the soundproof wall among vulnerable wind facilities. GFRP was chose as the reinforcement frame among the components of the soundproof wall. The modeling of the soundproof wall was made using the finite element commercial analysis program ABAQUS and the resistance performance was estimated through the optimal model analysis of the soundproof wall. Wind loads were calculated using Monte Carlo Simulation. Finally, wind fragility evaluation was performed to predict the degree of damage of the GFRP frame soundproof wall. It is necessary to verify the performance of the GFRP frame through comparison with the aluminum frame which is generally used in the construction of the soundproofing wall.
        3,000원
        72.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydroforming is a forming technology in which a steel tube is fixed in a die and formed to fit a specified design shape by applying hydraulic pressure from inside the tube. In present study, the whole process of sub-frame side member development is presented by tube hydro-forming using steel material. At the part design stage, it requires feasibility study and process design aided by CAE (computer aided design) to confirm hydro-formability in details. Overall possibility of hydro-formable side member parts could be examined by cross sectional analyses. All the components is designed and formability is examined from the point of geometry and thinning. From the simulation results, the maximum thickness reduction rate is 55% after hydroforming. In order to improve this result, the feeding by 30 mm is applied to the both sides of the tube and the thickness reduction can be reduced from this management.
        4,000원
        73.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ‘Seismic Performance Evaluation Method for Existing Buildings (2013)’ developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.
        4,200원
        74.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of sub-frame parts development by tube hydro-forming using steel material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (computer aided design) to confirm hydro-formability in details. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. All the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.
        4,800원
        76.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.
        4,300원
        78.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to explore possibilities of cultivating horticultural crops in the air-dome greenhouse in comparison to the common iron-frame greenhouse as the standard. The levels of carbon dioxide and atmospheric pressure measured inside the air-dome greenhouse turned out to be higher than those measured inside the iron-frame greenhouse. Contrastingly, light intensity was relatively weaker inside the air-dome greenhouse due to the air-inflated double layers. Plants of melon and cherry tomato were cultivated from May 2 to August 12, 2016, respectively in the two greenhouses. For melon plants, growth in the air-dome greenhouse effectively increased fruit weight as well as trunk circumference compared to iron-frame greenhouse. Moreover, soluble sugar content of melon fruit was significantly higher when cultivated in the air-dome greenhouse. For cherry tomato plants, fruit yield of cherry tomato was significantly increased inside the air-dome greenhouse. Furthermore, it has been found that the air-dome greenhouse was considerably effective in shortening the growing period of melon and cherry tomato plants in comparison to the iron-frame greenhouse.
        4,000원
        79.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, FE analysis was performed for characterising structural strength of a seat frame w.r.t. varying sectional shapes as well as different materials of the seat back frame based on the FMVSS 207 regulation in order to obtain the design outline of a lightweight seat frane structure. Four types of materials, i.e., SAPH440, Al7021, Al6082 and carbon/epoxy composites were applied to the seat back frame type beams and their bending behaviours were compared by three point bending FE analysis. Consequently, the lightweight structure of seat back frame with the equivalent strength characteristics of conventional frame was suggested.
        4,000원
        80.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stiffness of a bicycle frame is a major factor of a bicycle performance related to safety, stability, and weight. In this study, the torsional and bottom bracket stiffness of a bicycle frame were experimentally investigated. The torsional and bottom bracket stiffness for 63 bicycle frames were evaluated and analyzed by measuring the displacement of frames. The torsional stiffness is related with turning performance and the bottom bracket stiffness is related with power transmission. The experimental results show that the average stiffness varies up to 20 % according to the frame materials and types. The torsional stiffness has a strong corelation with the bottom bracket stiffness even though they have different effects on a bicycle frame. It seems that the experimental results can be applied to the quality criteria of racing bicycles and also design standard of a bicycle frame.
        4,000원
        1 2 3 4 5