검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 124

        81.
        2017.05 서비스 종료(열람 제한)
        Background : The study about cultured wild ginseng root (Panax ginseng C. A. Meyer) have been reported mainly ginsenosides in saponins family. However metabolites of fermented wild ginseng roots by microorganisms was not reported yet. Methods and Results : Cultured wild ginseng roots were used for fermentation of ginseng roots using Pediococcus pentosaceus and other bacterial strains. We analyzed different types of ginsenoside contents, metabolite and enzyme contents, and gene expression by using microorganisms. Results showed considerable differences in ginseonoside contents specially Rk1 and Rg5. The highest enzyme activity level was by Glutathione reductase (GR) and Glutathione S transferase (GST) in fermented ginseng roots than control (non-fermented), whereas Glutathione peroxidase (GPX) and Peroxidase (POD) contents were reduced. Score plots and loading plots of principal components 1 of the PCA result obtained from the data on 43 metabolites in fermented wild ginseng root of five conditions. The concentration of metabolite such as β-alanin and 4-aminobutyric acid (GABA), which is used to improve memory were increased in fermented ginseng roots than control. We found functional gene in wild ginseng root related with metabolic process. The APX gene expression gradually increased in fermented ginseng root with respect to fermentation times. Conclusion : In this study, accumulation of functional metabolite in cultured ginseng r
        82.
        2016.10 서비스 종료(열람 제한)
        Background : Despite the presence of various bioactive compounds in ginseng, there is lack of study about the phenolic metabolites in ginseng especially depending on the cultivation soil and the fertilizer types. Therefore, this study aims to develop an (-)ESI-LC-MS/MS analytical method for the measurement of selected phenolic compounds in the ginseng root. Methods and Results : Total phenol content in ginseng root was measured with the Folin-Ciocalteau method using UV/Vis spectrophotometer. Then, the 56 selected phenolic metabolites in ginseng root were measured with the (-)ESI-LC-MS/MS. The brief LC-MS/MS analytical conditions were as follows; Thermo Scientific Syncronis C18 HPLC Column (250 × 4.6 mm, 5 μm) was used. Optimized instrument settings were as follows: Curtain gas 20 psi, collision gas 2 psi, ion spray voltage –4500 V, nebulizer gas 40 psi, heating gas 70 psi, and its temperature 350℃. Total phenol content was higher in the ginseng cultivated in the paddy-converted field than that in upland. In particular, the total phenol content was about 6% decreased in the ginseng root cultivated with the food waste fertilizer compared to the control (p < 0.05). Six phenolic constituents including caffeic, chlorogenic, p-coumaric, ferulic, gentisic, and salicylic acids were found in the ginseng root by using the LC-MS/MS in MRM (multiple reaction monitoring) Mode. These six phenolic compounds occupied approximately 20% of the total phenol content measured in the corresponding ginseng root. The chlorogenic acid was the most abundant phenolic metabolite found in the ginseng root, accounting for ≥ 95% of the sum of six phenolic compounds, in this study. Conclusion : This preliminary study can be useful for the study on content and composition of phenolic metabolites in ginseng root with the aspect of metabolomics. We plan to further optimize the LC-MS/MS analytical method and then provide the extended understanding on the phenolic metabolism in the ginseng root with respect to the ginseng cultivation conditions.
        83.
        2015.11 KCI 등재 서비스 종료(열람 제한)
        Purpose: The purpose of the current study was to provide preliminary evidence for reliability and validity of a new golf performance profiling technique. The technique was designed to assess both ideal need states required for successful performance in competition and present performance states of an athlete. Methods: Two groups of golfers responded to the golf performance profile comprised of important elements of golf skills, physical fitness and psychological skills. An additional group of golfers participated in psychological skills training (PST) sessions. Scores on need state, current state were measured before and after the PST sessions. The number of weeks until the golfers who attained their optimal zone on their performance elements actually showed their personal best performance was monitored. Results: The results from test and retest (1 week and 4 week distance) showed temporal stability across different performance elements. Golfers who participated in PST demonstrated improved scores on the majority of the elements, which could be an evidence of validity. Those reached optimal zones in the performance profile achieved their personal best performance within an average of 17 weeks. This golf performance profiling technique would be a useful tool for motivating athletes’ preparation toward competition and predicting their successful performance.
        85.
        2015.07 서비스 종료(열람 제한)
        MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21-nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. We here employed high-throughput small-RNA and degradome sequencing to comprehensively identify small-RNAs and their targets in pepper. From these, we identified several novel targets of miRNAs, including the major de novo methylation enzyme involved in RNA-directed DNA methylation in plants. Furthermore, we identified several highly abundant 22-nt miRNA families that target conserved domains in NB-LRRs and trigger the production of phased secondary siRNAs. We showed that transient co-expression of can-miR482 with Rpi-blb1, one of the potato NB-LRRs, resulted in the attenuation of the hypersenstive responses in Nicotiana benthamiana, suggesting that interaction between miR-482 family and disease resistance proteins is likely to serve as a conserved trigger for defense mechanism in Solanaceae. This work provides the first reliable draft of the pepper small RNA transcriptome that offers an expanded picture of miRNAs in relation to NB-LRR regulation, providing a basis for understanding the functional roles of miRNAs in disease resistance pepper.
        86.
        2015.07 서비스 종료(열람 제한)
        The control of flowering, transition from vegetative to reproductive stage, is crucial for significant success during plant development. Multiple environmental and developmental signals are transmitted to the shoot apical meristem and converted to local cue to process developmental phage. These crucial process are delicately controlled and regulated by expression of tissue specifically expressed genes involved in inflorescence development. Therefore, it is necessary that molecular mechanism associated with inflorescence development is revealed to understand control of flowering by genome-wide expression pattern of inflorescence specific genes. In this study we used Affymetrix GeneChip Wheat Genome Array for genome-wide analysis of the expressed genes of inflorescence development including apical meristem and developing spikelet to understand the mechanism of floral development in early stage of wheat inflorescence. Moreover, meta-analysis of 1479 microarray dataset of GPL 3802 provided by Gene Expression Omnibus (GEO) was conducted to determine expression pattern of each probe throughout whole life cycle. Based on meta-analysis, we demonstrate inflorescence specific expressed genes in wheat inflorescence including apical meristem, spikelet meristem to understand the mechanism of floral development of wheat inflorescence.
        87.
        2015.07 서비스 종료(열람 제한)
        Efficient infiltration of water through cell membranes is arbitrated by a family of transmembrane water channels called aquaporins (AQPs). Aquaporin belongs to a highly conserved group of membrane proteins called major intrinsic proteins that facilitate the transport of water and a variety of low molecular weight solutes across biological membranes,which is essential for plants to survive in stress conditions. This study identified 59 BrAQP genes from B. rapa database and Br135K microarray dataset, which was formed by applying low-temperature stresses to contrasting Chinese cabbage two inbreed lines, Chiifu and Kenshin. Based on phylogenetic analyses of BrAQPs revealed four distinct subfamilies, such as plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP) with aquaporin of Tomato and Arabidopsis thaliana. All BrAQP genes were firstly examined through homology study with existing biotic and abiotic stress resistance-related aquaporin genes of other plant species and found a high degree of homology. We selected PIP subfamily genes for expression analysis based on microarray data with high and differential transcript abundance levels and homology study with stress related aquaporin genes of other plant species. In our study, we characterized all B. rapa aquaporin genes and understanding the BrPIP subfamily gene function in plants under various environmental stimuli, the expressions of BrPIP genes under various abiotic stress conditions including cold, drought, salinity, water logging, ABA treatment and Fusarium oxysporum f. sp. Conglutinans infection were investigated by a quantitative real-time reverse transcription-PCR analysis. In our expression analysis, 4 BrPIP genes showed responsive expression against F. oxysporum f. sp. Conglutinans infection. The selected genes showed an organ-specific expression, and 12 out of 22 BrPIP genes were differentially expressed in Chiifu compared to Kenshin under cold stresses. Only 7 genes showed up regulation under drought stress and incase of salt stress 17 BrPIP genes were more responsiveness. Additionally, 18 BrPIP genes were up regulated by ABA treatment and all BrPIP genes showed down regulation under water logging stress. Together with expression and bioinformatic analyses, our results provides novel basis to allocate the stress-related biological function to each PIP gene.
        88.
        2015.07 서비스 종료(열람 제한)
        Cultivated tomato (Solanum lycopersicum L.) is an economically important vegetable and has a narrow genetic base due to intensive human selection through domestication and breeding. The low level of genetic variation between cultivated tomatoes has made it difficult to develop molecular markers for elite breeding lines. Recently, genome-wide 145,695 InDels were identified from in silico analysis of two tomato genome sequences, Heinz 1706 (S. lycoperiscum) and LA1589 (S. pimpnellifolium). Of these, 2,272 InDels were validated and 717 InDels showed polymorphism in cultivated tomatoes. In the present study, we selected 48 out of 717 InDels based on PIC value (> 0.3) and size (> 10 bp) to develop a DNA database for commercial tomato cultivars. We also used an additional set of 28 InDels that have been previously reported. These markers were distributed across 11 chromosomes with an average of 6.6 markers. A total of 48 F1 hybrid cultivars were collected from 20 seed companies and a subset of eight cultivars were used to test polymorphism of the InDel markers. The 37 InDel markers were polymorphic in these cultivars and were used to genotype additional 40 cultivars. Genetic distances and relationships between cultivars were assessed using the InDel genotypes of 48 cultivars. This analysis revealed that the InDel markers detected genetic variations to identify 46 cultivars. Our results demonstrate that the InDel markers will be a useful resource to construct a DNA database for tomato cultivars and to protect tomato breeder’s rights via variety identification.
        89.
        2015.07 서비스 종료(열람 제한)
        This experiment was carried out to compare the morphological traits of Korean, Chinese, Japanese and Southeast Asian(SEA) soybeans from RDA genebank. Days to flowering were ranged from 51 to 125 days with an average of 75 days. Those of China were the shortest with an average of 58 days and those of SEA were the longest with an average of 99 days. Growth days were the shortest with 94 days from China, and longest with 188 days from Korea and SEA. The 100 seed weight of soybeans was ranged from 3.4g to 46.4g, with an average 22.2g. The 100 seed weight was the lightest with an average 11.8g from SEA and the heaviest with an average 24.6g from Korea. In growth habit, over 50% of being collected from Korea, Japan and China were erect type, but 94% from SEA were intermediate type. The highest percentage of seed coat color was yellow(66.1%), followed by yellowing green(10.0%). As a result of cotyledon color in 760 black seed was 76.1% with yellow, 23.9% with green. Green cotyledon was much more in Korea(38.6%) and Japan(33.3%) than other countries. One thousand seven accessions from Korea, Japan, China and SEA were analyzed using 7 SSR markers. One hundred eighty alleles were detected with a lowest 16 at the Satt537 and a highest 35 at the Satt390. The average polymorphism information content(PIC) was 0.68, the highest with 0.7 in Japan. Gene diversity was the highest with 0.73 in China and Japan, while the lowest in SEA with 0.68.
        90.
        2015.07 서비스 종료(열람 제한)
        Onion and other Allium vegetables have been valued since antiquity for their pungent flavor and aroma. Modern science has confirmed traditional benefits that the organosulfur compounds that impart flavor also confer significant human health benefits such as reduced blood clotting and antimicrobial properties. Glucose, fructose and sucrose comprises majority of onion bulb dry matter content. The sugars, pyruvic acid accumulation and transcript level of some transcription factors involved in the biosynthesis of high sugars and pyruvic acid. These profiles were compared with two different lines 36101 (early) and 36122(Late) of bulb onion (Allium cepa L.) growing under drought and photoperiod condition using High Performance Liquid Chromatography (HPLC) and Quantitative real time PCR using FT genes. We identified the gene AcFT4 was responsible for early and late bulb intiation in the onion lines. The cultivar lines 36101and 36122 were used to identify potential genes controlling pungency and sugar. The comparative analysis of two lines showed significant positive phenotypic and genetic correlations. Sugar and pungency profile showed significant difference between two lines. FT gene expression and pungency level was high in onion lines during drought stress. In this study, we proposed the biochemical characterization of two line and genes involved in the bulb formation were also studied. There is a correlation between sugars and pungency level during the drought stress. These results could be presumably used as useful information to obtain onion varieties rich in sugars and pungency.
        91.
        2015.05 KCI 등재 서비스 종료(열람 제한)
        Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). This study, the mRNA expression profiles provide insight into the mechanism of action of cadmium in Fleshy shrimp (Fenneropenaeus chinensis). The ability of genomic technologies was contributed decisively to development of new molecular biomarkers and to the determination of new possible gene targets. Also, it can be approach for monitoring of trace metal using oligo-chip microarray-based in potential model marine user level organisms. 15K oligo-chip for F. chinensis that include mostly unique sets of genes from cDNA sequences was developed. A total of 13,971 spots (1,181 mRNAs up- regulated and 996 down regulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to cadmium for different conditions (Cd24-5000 and Cd48-1000). Most of the changes of mRNA expression were observed at the long time and low concentration exposure of Cd48-1000. But, gene ontology analysis (GO annotation) were no significant different between experiments groups. It was observed that mRNA expression of main genes involved in metabolism, cell component, molecular binding and catalytic function. It was suggested that cadmium inhibited metabolism and growth of F. chinensis .
        93.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (≥ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose- 1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.
        96.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Sorghum seed is traditionally used as secondary food sources in addition to rice in Korea. While the hypoglycemia regulating phytochemicals have been found in sorghum seed, peptides related with hypoglycemia never been studied before. To obtain the peptide characteristics and the specifically high-expressed peptides in hypoglycemic sorghum seed, peptide profiles of seven hypoglycemic and five nonhypoglycemic sorghum lines bred in RDA were determined using surface-enhanced laser desorption/ionization time-offlight mass spectrometry (SELDI-TOF MS). The twelve sorghum lines exhibited 104 peptides on CM10 protein chip array (weak cation exchange) and 95 peptides on Q10 (weak cation exchange) in the molecular mass range from 2,000 to 20,000 Da. Heat map via supervised hierarchical clustering of the significantly different peptides (p < 0.01) in peak intensity among the 12 lines effectively revealed the specifically upregulated peptides in each line and distinguished between 7 hypoglycemic and 5 non-hypoglycemic lines. Through the comparison with hypoglycemic and non-hypoglycemic lines, 10 peptides including 2231.6, 2845.4, 2907.9, 3063.5, 3132.6, 3520.8, 4078.8, 5066.2, 5296.5, 5375.5 Da were specifically high-expressed in hypoglycemic lines at p < 0.00001. This study characterized seed peptides of 12 sorghums and found ten peptides highly expressed for hypoglycemic sorghum lines, which could be used as peptide biomarkers for identification of hypoglycemic sorghum.
        97.
        2014.07 서비스 종료(열람 제한)
        Susceptible Vitis vinifera responds to Xylella infection with a massive redirection of gene transcription. This transcriptional response is characterized by increased transcripts for phenlypropanoid and flavonoid biosynthesis, ethylene production, adaptation to oxidative stress, and homologs of pathogenesis related (PR) proteins, and decreased transcripts for genes related to photosynthesis. In addition, the results suggest that susceptible genotypes respond to Xylella infection by induction of limited, but inadequate, defense response. We also compared the transcriptional and physiological response of plants treated by pathogen infection, low or moderate water deficit, or a combination of pathogen infection and water deficit. Although the transcriptional response of plants to Xylella infection was distinct from the response of healthy plants to moderate water stress, we observed synergy between water stress and disease, such that water stressed plants exhibit a stronger transcriptional response to the pathogen. This interaction was mirrored at the physiological level for aspects of water relations and photosynthesis, and in terms of the severity of disease symptoms and pathogen colonization, providing a molecular correlation of the classical concept with the disease triangle.
        98.
        2014.07 서비스 종료(열람 제한)
        sequence and more than fifty thousand proteins have been obtained to date. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains TFs that also plays a crucial role as well and response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea. In the present study, 226 AP2/ERF TFs were identified from B. oleracea based on the available genome sequence. Based on sequence similarity, the AP2/ERF superfamily was classified into five groups (DREB, ERF, AP2, RAV and Soloist) and 15 subgroups. The identification, classification, phylogenetic construction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction network were then predicted and analyzed. AP2/ERF TFs expression levels exhibited differences in response to varying abiotic stresses based on expressed sequence tags (ESTs). BoCBF1a, 1b, 2, 3 and 4, which were highly conserved in Arabidopsis and B. rapa CBF/DREB genes families were well characterized. Expression analysis enabled elucidation of the molecular and genetic level expression patterns of cold tolerance (CT) and susceptible lines (CS) of cabbage and indicated that all BoCBF genes responded to abiotic stresses. Comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes and BoCBF family genes in B. oleracea is required to elucidate AP2/ERF, which will provide rich resources and opportunities to understand abiotic stress tolerance in crops.
        99.
        2014.07 서비스 종료(열람 제한)
        Cabbage (Brassica oleracea) is one of the most important vegetable crops in the world. Yet, its sensitivity to cold stress, especially at the seedling stage, could limit the production. Until now, only, few studies about heritably durable cold tolerance were carried out in cabbage. Hence this study was done to characterize the transcriptome profiles of two cabbage genotypes with contrasting responses to cold stress using Illumina Hiseq short read (paired-end) sequencing technology. MicroRNAs (miRNAs) represent a class of short, non-coding, endogenous RNAs which play important roles in post-transcriptional regulation of gene expression. Thisstudy,wesoughttoprovideamorecomprehensivepredictionofB. oleracea cold responsive miRNAs based on high through put sequencing using two contrasting genotypes. The raw sequences were processed for removal of poor-quality and adaptor sequences. Then, the high quality unigenes (58,094) reads were applied for length filtering. Then, unigenes reads were used in a BLASTN search against of Rfam database and known miRNA database (miRBase 18.0) to removal of non-coding RNA’s and identifies conserved miRNA’s in B. oleracea. Further, novel reads were searched against B. oleracea genome. Their flanking sequences in the genome were used to predict their secondary structures, target prediction, and functional analysis. This is first report to identify novel miRNAs for cold stress through high throughput techniques. Our findings will provide an overview of potential miRNAs involved in cold stress, which may provide important clues on the function of miRNAs in from B. oleracea and other closely related Brassica species.
        100.
        2014.07 서비스 종료(열람 제한)
        MADS-box transcription factor (TF), primarily involved in the floral organ specification with other several aspects of plant growth and development. Whole genome survey of B. rapa revealed 167 MADS-box genes and categorized into MIKCc, MIKC*, Mα, Mβ and Mγ groups based on phylogeny, protein motif structure and exon-intron organizations. MIKCc group belongs 89 genes, which is the highest in number than in any other crops till date. The MIKCc group has further classified into 13 sub-families. In case of chromosomal localization, remarkably 57 MIKCc type MADS-box genes were found in the duplicated segments of B. rapa genome, whereas only 4 M-type genes have resulted from tandem duplications. Besides floral and vegetative tissue expression we also identified MADS-box genes with their male and female gametophyte specific expression in different stages of flower bud development. Furthermore, from a low temperature treated whole genome microarray data set 19 BrMADS genes were found to show variable transcript abundance in two contrasting double haploid lines of B. rapa. Subsequently, the responsive genes were investigated under three abiotic stresses where they showed differential and corresponsive expression patterns. An extensive annotation and transcriptome profiling undertaken in this study might be useful for understanding the involvement of MADS-box genes in stress resistance besides their growth and developmental functions, which ultimately will provide the basis for functional characterization and exploitation of the candidate genes in the genetic engineering study of B. rapa
        1 2 3 4 5