검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7,348

        101.
        2023.11 구독 인증기관·개인회원 무료
        Heavy water (deuterium oxide, D2O) is water in which hydrogen atoms (1H, H), one of the constituent elements of water molecules, have been replaced with deuterium (2H, D), a heavier isotope. Heavy water is used in a variety of industries, including semiconductors, nuclear magnetic resonance, infrared spectroscopy, neutron deceleration, neutrino detection, metabolic rate studies, neutron capture therapy, and the production of radioactive materials such as plutonium and tritium. In particular, heavy water is used as a neutron moderator or coolant in nuclear reactors and as a fuel for nuclear fusion energy, methods for measuring heavy water are becoming increasingly important. There are methods with density, mass spectrometry, and infrared (IR) spectroscopy. In this study, Fourier transform infrared spectroscopy (FT-IR) was used, which is commonly used in IR spectroscopy because of its relatively high analytical sensitivity, low operating costs, and easy online analysis. Heavy water was identified in the range of 2,300-2,600 cm-1 wavenumber (O-D) and the range of 1,200-1,300 cm-1 wavenumber (D-O-D), which are known to be the range with strong infrared absorption. As a result, the linearity of infrared absorbance for each heavy water concentration was confirmed within the relative expansion uncertainty (k=2).
        102.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
        103.
        2023.11 구독 인증기관·개인회원 무료
        Molten chloride salts have received considerable research attention as potential nuclear fuel and coolant candidates for molten salt reactors. However, there are several challenges, especially for structural materials due to the selective dissolution of chromium (Cr) in the molten chloride salts environment. Understanding the compatibility of uranium (U), which is used as nuclear fuel in molten salt reactors, with Cr in molten chloride salts is critical for designing the molten salt reactor structure. Therefore, in this study, the cyclic voltammetry (CV) was used to investigate the electrochemical behaviors of U and Cr. The diffusion coefficients and formal potentials were obtained. The electrochemical properties of uranium and chromium were investigated by CV in molten NaCl-MgCl2 salt at 600°C. Tungsten rods for working and counter electrode, and Ag/AgCl for reference electrode were utilized in this experiment. UCl3 made from the chemical dissolution of U rods and CrCl2 (Sigma-Aldrich, 99.99%) were used. Diffusion coefficients (D) of U and Cr were calculated by measuring reduction peak current of U3+/U and Cr2+/Cr from CV curves and using the Berzins-Delahay equation; D (U3+/U) = 3.0×10-5 cm2s-1 and D (Cr2+/Cr) = 3.3×10-5 cm2s-1. The formal potentials were also calculated by using the reduction peak potential obtained from CV results; E0’ (U3+/U) = -1.173 V and E0’ (Cr2+/Cr) = -0.321 V. The ionization tendency was investigated by comparing each reduction peak potential. The reduction peak potential Ep,c was increasing order of Ep,c (U3+/U) < Ep,c (Cr2+/Cr) < Ep,c (U4+/U3+). It can be seen that in the presence of U4+ and Cr metals, the Cr in the alloy can dissolve into Cr2+, but in the presence of U3+ and Cr metals, the Cr in the alloy does not dissolve into Cr2+. By analyzing the CV curve, diffusion coefficients and formal standard potentials were obtained. The result of comparing reduction peak potentials suggests that the nuclear fuel using U4+ should be inhibited to prevent the selective dissolution of Cr.
        104.
        2023.11 구독 인증기관·개인회원 무료
        Copper hexacyanoferrate (Cu-HCF), which is a type of Prussian Blue analogue (PBA), possesses a specific lattice structure that allows it to selectively and effectively adsorb cesium with a high capacity. However, its powdery form presents difficulties in terms of recovery when introduced into aqueous environments, and its dispersion in water has the potential to impede sunlight penetration, possibly affecting aquatic ecosystems. To address this, sponge-type aluminum oxide, referred to as alumina foam (AF), was employed as a supporting material. The synthesis was achieved through a dip-coating method, involving the coating of aluminum oxide foam with copper oxide, followed by a reaction with potassium hexacyanoferrate (KHCF), resulting in the in-situ formation of Cu-HCF. Notably, Copper oxide remained chemically stable, which led to the application of 1, 3, 5-benzenetricarboxylic acid (H3BTC) to facilitate its conversion into Cu-HCF. This was necessary to ensure the proper transformation of copper oxide into Cu-HCF on the AF in the presence of KHCF. The synthesis of Cu-HCF from copper oxide using H3BTC was verified through X-ray diffraction (XRD) analysis. The manufactured adsorbent material, referred to as AF@CuHCF, was characterized using Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These analyses revealed the presence of the characteristic C≡N bond at 2,100 cm-1, confirming the existence of Cu-HCF within the AF@CuHCF, accounting for approximately 3.24% of its composition. AF@CuHCF exhibited a maximum adsorption capacity of 34.74 mg/g and demonstrated selective cesium adsorption even in the presence of competing ions such as Na+, K+, Mg2+, and Ca2+. Consequently, AF@CuHCF effectively validated its capabilities to selectively and efficiently adsorb cesium from Cs-contaminating wastewater.
        105.
        2023.11 구독 인증기관·개인회원 무료
        Carbon 14 (14C) is radioactive isotope of carbon which emits beta ray with long half-life (5730±30 years). Since the 14C is significantly hazardous for human being, the appropriate process to treat 14C is necessary. From the nuclear power plant, the ion exchange resin, graphite, and activated carbon are the main source of 14C. During the effort to reduce the volume of those wastes, the 14C is inevitably occurred as carbon dioxide (CO2) form, so called 14CO2. Thus, the development of technology to permanently capture and safely dispose 14CO2 is required. In this presentation, we introduce the decommissioning technology ranging from 14CO2 capture to solidification. First, the new class of glass adsorbent is developed which can irreversibly capture CO2 even under mild conditions. This material promotes the dissolution of alkaline earth ions due to the unstable glass structure. Then, the physical and chemical optimization of glass adsorbent enhances the performance of CO2 capture. Further, room temperature geopolymeric solidification is also performed to safely dispose 14C without any potential release.
        106.
        2023.11 구독 인증기관·개인회원 무료
        Pt/C catalysts were prepared using black carbon (CB), and evaluated for their potential application as a catalyst of liquid-phase catalystic exchange for tritium treatment. CB was treated with 10% H2O2 solution for 0 and 2 hours at 105°C, Ethylene glycol and 40wt% Pt were added to the dried treated sample to prepare a Pt/C catalyst. The physical and chemical properties of the prepared catalysts were evaluated by BET, XRD, elemental analysis (EA), and TEM analyses. As a result of BET analysis, the surface area of CB without 10% H2O2 was 237.2 m2·g-1, and after treatment with 10% H2O2, it decreased to 181.2 m2·g-1 for 2 hours. However, the internal surface area increased, indicating the possibility that more Pt could be distributed inside the CB treated with 10% H2O2. In the XRD analysis results, the presence of Pt was confirmed by observing the Pt peak in the prepared Pt/C catalyst, and it was also observed through TEM analysis that Pt was evenly distributed within the CB. The elemental analysis (EA) results showed that the ratio of S and N decreased and the ratio of O increased with increasing 10% H2O2 treatment time. The H2O2 treated carbon supported Pt catalysts and polytetrafluoroethylene were then loaded together on a foamed nickel carrier to obtain hydrophobic catalysts. Our hydrophobic Pt catalyst using H2O2 treated black carbon are expected to be usefully used in the tritium treatment system.
        107.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning site of Korean Research Reactor 1&2 (KRR-1&2), according to Low and Intermediate-level Radioactive Waste Disposal Acceptance Criteria of the Korea Radioactive Waste Agency (WAC-SIL-2022-1), characteristics of radioactive waste was conducted on approximately 550 drums of concrete and soil waste for a year starting from 2021. Among them, 50 drums of concrete waste transported and disposed to Gyeongju LILW disposal facility at the end of 2022. For the remaining approximately 500 drums of concrete and soil waste stored on-site, they were reclassified into two categories: permanent disposal grade and clearance grade. This classification was based on calculating the sum of fractions (SOF) per drum for each radionuclides. The plan is to dispose of around 200 drums in the permanent disposal grade and about 300 drums in the clearance grade by the end of 2023. Since concrete and soil decommissioning wastes are generated in large quantities over a short period with similar origins, they were grouped within five drums as suggested by the acceptance criteria. Mixed samples were collected from each group and used for radionuclide analysis. When utilizing mixed samples, three distinct samples are collected and analyzed for each group. The maximum value among these three radionuclide analysis results is then uniformly applied as the radionuclide concentration value for all drums within that group. Radioactive nuclides contained in similar types of radioactive waste with similar origins can be expected to have some statistical distribution. However, There has been no verification as to whether the maximum value among the three mixed samples exists within the statistical distribution or if it deviates from this distribution to represent a different value. In this study, we confirmed characteristics of radionuclide concentration distribution by examining and comparing radionuclide concentration distributions for radioactive wastes drum grouped for nuclear characteristic among 50 concrete wastes drum disposed in year 2022 and 500 concretes & soils drum scheduled for disposal (clearance or permanent disposal) in year 2023. In particular, when comparing tritium to other nuclides, it was observed that the standard deviation for the distribution of maximum values was approximately 318 times larger.
        108.
        2023.11 구독 인증기관·개인회원 무료
        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR 1&2), the first research reactors in South Korea, began in 1997 and the decommissioning status is currently proceeding with phase 3. It is expected that more than 5,000 tons of dismantled wastes will be generated as the contaminated building is demolished. Since these dismantled wastes must be disposed of in an efficient method considering economic feasibility, it is desirable to clearance extremely low-level wastes whose contamination is so minimal that the radiological risk is negligible. In Korea, in order to approve the clearance of radioactive waste, it must be proven that the nuclide concentration standards are met or that the dose to individuals and collectives is below the allowable dose value. At the KRR 1&2 decommissioning site, dismantled wastes have been steadily being disposed of through clearance procedure since 2021. Clearance was approved by the Korean Institute of Nuclear Safety (KINS) for one case of concrete waste in 2021 and two cases of metal waste in 2022. In 2023, the clearance of metal waste and asbestos waste has been approved so far, and in particular, this is the first case in Korea for asbestos waste. In this study, we compared the dose assessment methods and results of clearance wastes at the KRR 1&2 decommissioning site from 2021 to present. Dose assessment was conducted by applying the landfill scenario for concrete and asbestos and the recycling scenario for metal waste. The calculation codes used were RESRAD-onsite 7.2 and RESRAD-recycle 3.10. The dose conversion factors (DCF) for each age group (infant, 1y, 5y, 10y, 15y, adult) of the target nuclide used the values presented in ICRP-72, and in particular, geo-hydrological data of the actual landfill site was used as an input factor when evaluating landfill scenarios. As a result of the dose assessment, when landfilling concrete wastes in 2020, the personal dose and collective dose were evaluated the most at 2.80E+00 μSv/y and 4.83E-02 man·Sv/y, respectively.
        109.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power plants use ion exchange resins to purify liquid radioactive waste generated while operating nuclear power plants. In the case of PHWR, ion exchange resins are used in heavy water and dehydration systems, liquid waste treatment systems, and heavy water washing systems, and the used ion exchange resins are stored in waste resin storage tanks. The C-14 radioactivity concentration in the waste resin currently stored at the Wolseong Nuclear Power Plant is 4.6×106 Bq/g, exceeding the low-level limit, and if all is disposed of, it is 1.48×1015 Bq, exceeding the total limit of 3.04×1014 Bq of C-14 in the first stage disposal facility. Therefore, disposal is not possible at domestic low/medium-level disposal facilities. In addition, since the heavy water reactor waste resin mixture is stored at a ratio of about 20% activated carbon and zeolite mixture and about 80% waste resin, mixture extraction and separation technology and C-14 desorption and adsorption technology are required. Accordingly, research and development has been conducted domestically on methods to treat heavy water waste resin, but the waste resin mixture separation method is complex and inefficient, and there are limitations in applying it to the field due to the scale of the equipment being large compared to the field work space. Therefore, we would like to introduce a resin treatment technology that complements the problems of previous research. Previously, the waste resin mixture was extracted from the upper manhole and inspection hole of the storage tank, but in order to improve limitations such as worker safety, cost, and increased work time, the SRHS, which was planned at the time of nuclear power plant design, is utilized. In addition, by capturing high-purity 14CO2 in a liquid state in a high-pressure container, it ensures safety for long-term storage and is easy to handle when necessary, maximizing management efficiency. In addition, the modularization of the waste resin separation and withdrawal process from the storage tank, C-14 desorption and monitoring process, high-concentration 14CO2 capture and storage process, and 14CO2 adsorption process enables separation of each process, making it applicable to narrow work spaces. When this technology is used to treat waste resin mixtures in PHWR, it is expected to demonstrate its value as customized, high-efficiency equipment that can secure field applicability and safety and reflect the diverse needs of consumers according to changes in the working environment.
        110.
        2023.11 구독 인증기관·개인회원 무료
        Pyroprocessing technology has emerged as a viable alternative for the treatment of metal/oxide used fuel within the nuclear fuel cycle. This innovative approach involves an oxide reduction process wherein spent fuel in oxide form is placed within a cathode basket immersed in a molten LiCl-Li2O salt operating at 923 K. The chemical reduction of these oxide materials into their metallic counterparts occurs through a reaction with Li metal, which is electrochemically deposited onto the cathode. However, during process, the generation of Li2O within the fuel basket is inevitable, and due to the limited reduction efficiency, a significant portion of rare earth oxides (REOx) remains in their oxide state. The presence of these impurities, specifically Li2O and REOx, necessitates their transfer into the electrorefining system, leading to several challenges. Both Li2O and REOx exhibit reactivity with UCl3, the primary electrolyte within the electrorefining system, causing a continuous reduction in UCl3 concentration throughout the process. Furthermore, the formation of fine UO2 powder within the salt system, resulting from chemical reactions, poses a potential long-term operational and safety concern within the electrorefining process.Various techniques have been developed to address the issue of UO2 fine particle removal from the salt, utilizing both chemical and mechanical methods. However, it is crucial that these methods do not interfere with the core pyroprocessing procedure. This study aims to investigate the impact of Li2O and REOx introduced from the electrolytic reduction process on the electrorefining system. Additionally, we propose a method to effectively eliminate the generated UO2 fine powder, thereby enhancing the long-term operational stability of the electrorefining process. The efficiency of this proposed solution in removing oxidized powder has been confirmed through laboratory-scale testing, and we will provide a comprehensive discussion of the detailed results.
        111.
        2023.11 구독 인증기관·개인회원 무료
        Molten salt reactor (MSR) uses fluoride or chloride based molten salt as a coolant of the system, and fuel materials are dissolved in the molten salt, therefore it can be act as both coolant and nuclear fuel. A few issues have arisen from early-stage research and development program of MSR from Oak Ridge National Laboratory, including corrosion of structural materials and fission product management. For investigating the effect of additives on corrosion of structural materials, Mg(OH)2 and MgCl2*6H2O are added into the NaCl-MgCl2 eutectic salt. Prepared chloride salt is injected into the autoclave in the glove box, as well as corrosion coupons for candidate structural materials for molten chloride salt reactor, SS316, Alloy 600, and C-276 are also prepared. The temperature is set as 700°C. After 500 h corrosion experiment, the samples are taken out from the autoclave, and they are analyzed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SS316 samples show weight loss with all salt conditions, while Alloy 600 and C-276 show weight gain after the corrosion experiment.
        112.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a promising anode for sodium-ion batteries (SIBs), cobalt sulfide ( CoS2) has attracted extensive attention due to its high theoretical capacity, easy preparation, and superior electrochemical activity. However, its intrinsic low conductivity and large volume expansion result in poor cycling ability. Herein, nitrogen-doped carbon-coated CoS2 nanoparticles (N–C@ CoS2) were prepared by a C3N4 soft-template-assisted method. Carbon coating improves the conductivity and prevents the aggregation of CoS2 nanoparticles. In addition, the C3N4 template provides a porous graphene-like structure as a conductive framework, affording a fast and constant transport path for electrons and void space for buffering the volume change of CoS2 nanoparticles. Benefitting from the superiorities, the Na-storage properties of the N–C@CoS2 electrode are remarkably boosted. The advanced anode delivers a long-term capacity of 376.27 mAh g− 1 at 0.1 A g− 1 after 500 cycles. This method can also apply to preparing other metal sulfide materials for SIBs and provides the relevant experimental basis for the further development of energy storage materials.
        4,000원
        113.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, norepinephrine (NE) was determined by an electrochemical sensor represented by a carbon paste electrode boosted using nitrogen-doped porous carbon (NDPC) derived from Spirulina Platensis microalga anchored CoFe2O4@ NiO and 1-Ethyl-3-methylimidazolium acetate (EMIM Ac) ionic liquid. The morphological characteristics of the catalyst were recorded by field emission scanning electron microscope (FE-SEM) images. Moreover, the electrochemical behavior of norepinephrine on the fabricated electrode was checked using various voltammetric methods. All tests were done at pH 7.0 as the optimized condition in phosphate buffer solution. The results from linear sweep voltammetry revealed that the electro-oxidation of norepinephrine was diffusion, and the diffusion coefficient value was obtained by chronoamperometry (D⁓6.195 × 10– 4). The linear concentration of the modified electrode was obtained from 10 to 500 μM with a limit of detection of 2.26 μM using the square wave voltammetry (SWV) method. The sensor selectivity was investigated using various species, and the results from stability and reproducibility tests showed acceptable values. The sensor's efficiency was tested in urine and pharmaceutical as real samples with recovery percentages between 97.1% and 102.82%.
        4,200원
        115.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, synergetic and separate influence of nano-carbon black (C.Bn) and SiC on the microstructure and flexural strength of ZrB2 were investigated. So, ZrB2 and ZrB2- 30vol%-based composites containing 10 and 15 vol% C.Bn as well as ZrB2- 15 vol% SiC were fabricated via spark plasma sintering at 1850 °C for soaking time of 8 min under the applied pressure of 35 MPa. Relative density was measured by Archimedes method. Microstructural evaluation was carried out by applying the field emission electron microscopy (FESEM), and flexural strength was measured by three-point bending test. It was found the relative density improves in the presence of C.Bn and SiC especially in synergetic state so that the full densification was gained in Z30Si10C.Bn and Z30Si15C.Bn composites through their reactions with impurities at 1850 °C. In the monolithic ZrB2 system, the C.Bn addition improves the flexural strength slightly to 300 MPa and 315 MPa from 290 MPa. However, co-doped 10 vol% C.Bn with 30 vol% SiC resulted to achieve maximum flexural strength of 486 MPa in comparison with individually applying each of them (395 MPa for Z30Si and 300 MPa for Z10 C.Bn).
        4,000원
        116.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해수의 탁도는 수중의 부유 물질이나 생물에 의해 혼탁해지는 정도를 정량적으로 나타낸 변수로 연안 환경을 이해하는 데 중요한 해양 변수이다. 한반도의 서해안은 얕은 수심, 조류, 하천 유래 부유 퇴적물의 영향으로 광학적으로 강한 시공간 변동성을 가지고 있어서 인공위성 자료를 활용한 탁도 산출은 해양학적으로 다양한 활용 가능성을 가 진다. 본 연구에서는 경기만을 연구 해역으로 설정하고, 해수의 탁도 산출 알고리즘 개발을 위하여 2018년부터 2023년 7월까지 해양환경공단의 해양수질자동측정망 기반 현장 관측 탁도 자료와 Sentinel-2 인공위성의 MSI (Multi-Spectral Instrument) Level-2 자료를 사용하여 위성-현장 관측치 사이의 일치점 데이터베이스를 생산하였다. 이전의 다양한 탁도 산출식을 조사하여 정확도를 상호 비교하였고 경기만 해역에서 최적 파장대를 조사하고 분석하였다. 그 결과 녹색 밴드 (560 nm)를 기반으로 한 탁도 산출식이 0.08 NTU의 상대적으로 작은 평균 제곱근 오차를 보였다. 인공위성 광학 자료 를 기반으로 산출된 탁도는 해수의 광학적 특성과 연안 환경의 변동성을 이해하고 다양한 해상 활동에 도움을 줄 수 있을 것으로 기대된다.
        4,500원
        117.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was aimed to determine the changes in CO2 concentration according to the temperatures of daytime and nighttime in the CO2 supplemental greenhouse, and to compare calculated supplementary CO2 concentration during winter and spring cultivation seasons. CO2 concentrations in experimental greenhouses were analyzed by selecting representative days with different average temperatures due to differences in integrated solar radiation at the growth stage of leaf area index (LAI) 2.0 during the winter season of 2022 and 2023 years. The CO2 concentration was 459, 299, 275, and 239 μmol·mol-1, respectively at 1, 2, 3, and 4 p.m. after the CO2 supplementary time (10:00-13:00) under the higher temperature (HT, > 18°C daytime temp. avg. 31.7, 26.8, 23.8, and 22.4°C, respectively), while it was 500, 368, 366, 364 μmol·mol-1, respectively under the lower temperature (LT, < 18°C daytime temp. avg. 22.0, 18.9, 15.0, and 13.7°C, respectively), indicating the CO2 reduction was significantly higher in the HT than that of LT. During the nighttime, the concentration of CO2 gradually increased from 6 p.m. (346 μmol·mol-1) to 3 a.m. (454 μmol·mol-1) in the HT with a rate of 11 μmol·mol-1 per hour (240 tomatoes, leaf area 330m2), while the increase was very lesser under the LT. During the spring season, the CO2 concentration measured just before the start of CO2 fertilization (7:30 a.m.) in the CO2 enrichment greenhouse was 3-4 times higher in the HT (>15°C nighttime temperature avg.) than that of LT (< 15°C nighttime temperature avg.), and the calculated amount of CO2 fertilization on the day was also lower in HT. All the integrated results indicate that CO2 concentrations during the nighttime varies depending on the temperature, and the increased CO2 is a major source of CO2 for photosynthesis after sunrise, and it is necessary to develop a model formula for CO2 supplement considering the nighttime CO2 concentration.
        4,000원
        118.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the increasing attention to environmental pollution caused by particulate matter globally, the automotive industry has also become increasingly interested in particulate matter, especially particulate matter generated by automobile brake systems. Here, we designed a coating composition and analyzed its mechanical properties to reduce particulate matter generated by brake systems during braking of vehicles. We designed a composition to check the mechanical properties change by adding Cr3C2 and YSZ to the WC-Ni-Cr composite composition. Based on the designed composition, coating samples were manufactured, and the coating properties were analyzed by Vickers hardness and ball-on-disk tests. As a result of the experiments, we found that the hardness and friction coefficient of the coating increased as the amount of Cr3C2 added decreased. Furthermore, we found that the hardness of the coating layer decreased when YSZ was added at 20vol%, but the friction coefficient was higher than the composition with Cr3C2 addition.
        4,000원
        119.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanatebased glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 °C, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.
        4,000원
        120.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tb3+-doped CaNb2O6 (CaNb2O6:Tb3+) thin films were deposited on quartz substrates at a growth temperature of 300 °C using radio-frequency magnetron sputtering. The deposited thin films were annealed at several annealing temperatures for 20 min and characterized for their structural, morphological, and luminescent properties. The experimental results showed that the annealing temperature had a significant effect on the properties of the CaNb2O6:Tb3+ thin films. The crystalline structure of the as-grown CaNb2O6:Tb3+ thin films transformed from amorphous to crystalline after annealing at temperatures greater than or equal to 700 °C. The emission spectra of the thin films under excitation at 251 nm exhibited a dominant emission band at 546 nm arising from the 5D4 → 7F5 magnetic dipole transition of Tb3+ and three weak emission bands at 489, 586, and 620 nm, respectively. The intensity of the 5D4 → 7F5 (546 nm) magnetic dipole transition was greater than that of the 5D4 → 7F6 (489 nm) electrical dipole transition, indicating that the Tb3+ ions in the host crystal were located at sites with inversion symmetry. The average transmittance at wavelengths of 370~1,100 nm decreased from 86.8 % at 700 °C to 80.5 % at an annealing temperature of 1,000 °C, and a red shift was observed in the bandgap energy with increasing annealing temperature. These results suggest that the annealing temperature plays a crucial role in developing green light-emitting CaNb2O6:Tb3+ thin films for application in electroluminescent displays.
        4,000원