검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 319

        102.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 염료감응형 태양전지를 이용하여 시간에 따른 일사량과 그에 따른 전력량의 분석을 통해 계절적 변화에 따른 온실 적용 염료감응형 태양전지의 효율에 관한 기초 자료 수집 및 분석을 목표로 하였다. 경상대 학교 소재 온실 근처(위도 35o 9' 9.20" N, 경도 128o 5' 44.90" E, 고도 52m)에 태양전지 어레이를 설치, 2012 년 8월, 10월, 11월, 2013년 2월 약 네 달 동안 태양전 지가 받는 일사량과 그에 따른 전력량을 측정 및 비교, 분석하였다. 10월의 태양전지 패널 면적에 따른 일사량이 약 1,013.03MJ, 발생된 전력량은 약 4.87kWh로 네 달 중 가장 높게 측정되었고, 11월의 패널 면적에 따른 일사량이 약 755.25MJ, 발생 전력량은 약 3.34kWh로 가장 낮게 측정되었다. 염료감응형 태양전지의 평균 효율의 경 우 8월 한 달간, 약 3.12%로 측정되었고, 10월 2.60%, 11월 2.39%, 2월 2.23%로 각각 측정되었다. 본 연구를 통해, 향후 염료감응형 태양전지의 온실 등 농업분야 적 용 시 기초자료로 활용 할 수 있을 것으로 기대된다.
        4,000원
        103.
        2014.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method anddemonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of thesamples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectronspectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained aftercalcination at 500oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition,the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which canaffect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using anelectrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improvedsaturation magnetization(Ms) of approximately ~2.96emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
        4,000원
        104.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pt has been widely used as catalyst for fuel cell and exhausted gas clean systems due to its high catalytic activity.Recently, there have been researches on fabricating composite materials of Pt as a method of reducing the amount of Pt due toits high price. One of the approaches for saving Pt used as catalyst is a core shell structure consisting of Pt layer on the core ofthe non-noble metal. In this study, the synthesis of Pt shell was conducted on the surface of TiO2 particle, a non-noble material,by applying ultraviolet (UV) irradiation. Anatase TiO2 particles with the average size of 20~30 nm were immersed in the eth-anol dissolved with Pt precursor of H2PtCl6·6H2O and exposed to UV irradiation with the wavelength of 365 nm. It was con-firmed that Pt nano-particles were formed on the surface of TiO2 particles by photochemical reduction of Pt ion from the solution.The morphology of the synthesized Pt@TiO2 nano-composite was examined by TEM (Transmission Electron Microscopy).
        4,000원
        105.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present work, WO3 and WO3-TiO2 were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of WO3-TiO2 sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the WO3-TiO2 composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a WO3 coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing TiO2 response to ultrasonic radiations. In case of the addition of WO3 as new matter, the excited electrons from the WO3 particles are quickly transferred to TiO2 particle, as the conduction band of WO3 is 0.74 eV which is -0.5 eV more than that of TiO2. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of TiO2 nanoparticles was improved by loading WO3.
        4,000원
        106.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe4[Fe(CN)6]3 coated on a mica or TiO2/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. Fe4[Fe(CN)6]3, used as coloring agent, was uniformly coated on mica or TiO2/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at 70˚C. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of Fe4[Fe(CN)6]3 coated on mica and TiO2/mica showed high TSR values compared with the TSR value of Fe4[Fe(CN)6]3 itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to TiO2 coated mica(TM(b)) which has blueish interference color. The pigment of Fe4[Fe(CN)6]3 coated on TM(b) shows a strong blue color compared with that of Fe4[Fe(CN)6]3 coated on TiO2/Mmca(TM(w)), which has a whitish interference color.
        4,000원
        107.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The most general photocatalyst, TiO2 and WO3, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with TiO2 and WO3. In the TiO2-WO3 composite, WO3 absorbs visible light creating excited electrons and holes while some of the excited electrons move to TiO2 and the holes remain in WO3. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of TiO2-WO3 composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of TiO2(4) and WO3(6) shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.
        4,000원
        108.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 시험은 괘대재배를 한 ‘풍수’, ‘황금배’, ‘신고’, 그리고 ‘감천배’의 관행구와 무대재배를 한 과실에 TiO2나 Kaolin를 엽면처리 하였을 때 과실품질과 흑성병에 미치는 영향을 조사하고자 수행되었다. 1. 관행재배구는 TiO2나 Kaolin 보다 평균과중은 증가하였지만, 수량이 현저하게 감소하여 총 과실생산량은 감소되었다.2. 관행재배구에서의 ‘풍수’와 ‘감천배’의 당도는 TiO2나Kaolin 처리구 보다 높았다.3. ‘황금배’와 ‘감천배’의 과실 경도는 TiO2 처리시 가장 높았으며 Kaolin처리시도 다소 증가시켰다. ‘풍수’와 ‘신고’는 처리 간에 차이가 없었다.4. 과피색은 관행재배구에서 가장 밝은 색도를 보였다.5. TiO2와 Kaolin 처리는 품종에 상관없이 총 폴리페놀 함량을 증가시켰다.6. 엽의 흑성병 발생 억제율은 관행재배구가 ‘풍수’, ‘황금배’,‘신고’에서 낮게 나타났으며 ‘감천배’는 TiO2 처리로 100% 억제되었다.
        4,000원
        109.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study shows an air-purification test by the UV lamp on which TiO2 catalyst is deposited with glass fiber in the reactor chamber. This test was based on the fundamental data of air-purifier as assessing a removing ability on various contaminants such as CH3COOH, NH3, NO and SO2 as variation of the TiO2 coating, the wave of UV lamp, and the additive CaO. As a result, the highest decomposing removal ratio was shown when 5-times coated glass fiber was used. It can be due to the recombination reaction of electrons and electron-hole in the loaded CaO. Thus, the decomposing removal ratio increased as the recombination ratio decreased. In addition, it was confirmed that the decomposing removal ratio lowered when CaO was considerably deposited because it hided the lamp of OH-1 radical.
        4,000원
        110.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate (3mm×4mm×0.1mm) were connected to an anode and cathode, respectively. The progressive formation of TiO2 nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered TiO2 nanotubes were formed at a potential of 20 V in a solution of 1M H3PO4 + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of TiO2 nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The TiO2 nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the TiO2 nanotubes was gradually reduced. Short anodization processing for TiO2 nanotubes of within 10 minutes was established.
        4,000원
        111.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional TiO2 nanotube(TNT) arrays an alternative candidate over TiO2 nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive CuInS2 (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular TiO2 allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.
        4,000원
        112.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수중 이 취미를 유발시키는 대표적인 미량오염물질인 2-methylisoborneal (MIB)과 geosmin(지오스민)의 배제율을 소수성 polyethersulfone (PES) 나노분리막(분획분자량 : 400 Da)을 적용하여 다양한 용액조성에서 관찰하였다. 실험결과 적용된 모든 조건에서 지오스민이 2-MIB보다 다소 높은 배제율을 나타내었다. 용액의 pH 효과를 관찰한 결과 pH가 증가할수록 2-MIB와 지오스민 양쪽 모두 배제율이 증가하는 경향을 나타내었다. 한편, 수중 자연유기물질의 존재는 두 미량유기물질의 배제율을 크게 증가시켰으며 이와 같은 현상은 높은 pH일수록 더욱 뚜렷하게 나타났다. 소수성 분리막을 친수성 TiO2 입자로 표면코팅 시킨 후 배제율을 관찰한 결과 분리막의 표면을 친수화한 후 소수성인 2-MIB와 지오스민의 배제율은 증가하는 경향을 나타내었다. 따라서 소수성 상호작용은 미량유기물질 나노여과 배제율의 중요한 기작 중 하나임을 확인할 수 있었다.
        4,000원
        113.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가시광선에 감응하는 광촉매를 제조하기 위하여 TiO2에 질소(N)를 도핑하여 N-TiO2를 제조하였다. 제조한 광촉매의 결정성, 입자 형상 및 도핑 상태는 XRD, FE-SEM 및 XPS를 이용하여 조사하였다. 제조한 광촉매의 활성 평가는 메틸렌블루의 광분해로 조사하였다. 제조한 광촉매는 anatase type이었으며, pH가 높을수록 결정화도가 향상되었다. 제조한 광촉매의 입자 크기는 pH 2.0에서 5.42 nm, pH 4.7에서 5.99 nm, pH 9.0에서 7.58 nm로, 입자 크기는 pH가 증가 할수록 약간씩 증가하였다. 광촉매의 활성은 결정화도에 비례하였다. TiO2에 N를 도핑하여 제조한 N-TiO2가 가시광선 하에서도 활성을 나타냈다. TiO2에 도핑한 N는 격자 속에 존재하는 것이 아니라 표면에 존재하였다.
        4,000원
        114.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작은 고체 분체들은 피커링 유화 체계에서 안정화제로 작용하는 것은 이미 알려진 사실이다. 이 연구에서 우리는 알킬실란 처리 TiO2와 n-헥실알코올, 수계로 안정한 피커링 에멀젼을 제조하였다. TiO2 입자에 의해 안정화된 피커링 에멀젼을 제조하기 위한 최적의 조건은 TiO2 입자의 양과 수상/유상의 비에 의해 결정된다. 피커링 에멀젼의 형태는 물과 n-헥실알코올에 대한 입자들의 젖음성에 의존된다. 피커링 에멀젼은 TiO2가 5.00 wt%, 오일과 수상의 비가 3 : 7인 경우에 가장 안정하였다. 피커링 에멀젼을 형판으로 하여 무기 전조체를 졸-겔 공정에 의해 다공성 분체들이 합성되었다. 합성된 다공성 분체들은 광학 현미경, SEM, BET, XRD 및 EDS에 의해 확인되었다.
        4,900원
        115.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 TiO2 입자를 얻을 수 있는 침전법을 이용하여 TiO2 입자를 제조하였다. TiO2 입자 제조시 사용되는 알콜 용매의 종류와 온도 변화 등의 매개변수가 TiO2 입자의 결정 구조, 입자의 크기 및 형태에 미치는 영향을 조사하였다. TiO2 입자제조시 용매로 사용한 알콜 종류인 methyl alcohol, iso-propylalcohol, 그리고 tert-butylalcohol를 scanning electron microscope(SEM) 분석한 결과 iso-propylalcohol이 가장 좋은 결과를 가져왔다. 그리고 온도 변화를 열분석법을 사용한 결과 200℃에서 500℃까지는 아나타제 구조를 유지하였으나, 800℃에서는 루틸 구조로 전환되었다.
        4,000원
        116.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, TiO2 films were prepared in a 1.0 M H2SO4 solution containing NH4F at different anodic voltages. Chemical bonding states of F-N-codoped TiO2 were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped TiO2 films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 μm for the TiO2 anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the TiO2 anodized in the H2SO4-NH4F solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure TiO2 anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped TiO2 anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped TiO2 films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of TiO2 is improved by appropriate doping of F and N by the addition of NH4F.
        4,000원
        117.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature.Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. Theeffects of deposition pressure on the crystallization and electrical properties of TiO2 films were investigated. The crystal structureof TiO2 films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphousstructure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing depositionpressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation ofchemically stable TiO2 films. The dielectric constant of TiO2 films was significantly changed with deposition pressure. TiO2films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant anddissipation factor of films deposited at 70mTorr were found to be 100~120 and 0.83 at 1kHz, respectively. The temperaturedependence of the capacitance of TiO2 films showed the properties of class I ceramic capacitors. TiO2 films deposited at10~30mTorr showed dielectric breakdown at applied voltage of 7V. However, the films of 500~300nm thickness depositedat 50 and 70mTorr showed a leakage current of ~10−8~10−9 A at 100 V.
        4,000원
        118.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for and nanocrystalline powders mixture. Effect of the milling time on the powder characteristic of the synthesized powder was investigated. Nanocrystalline with a particle size of 50 nm was obtained at . High tetragonal powder with a tetragonality(=c/a) of 1.009 and a specific surface area of was acquired after heat-treatment at for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.
        4,000원
        119.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 thin films consisting of positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged titanium(IV) bis(ammonium lactato) dihydroxide(TALH) were successfully fabricated on glass beads by a layer-by-layer(LBL) self-assembly method. The glass beads used here showed a positive charge in an acid range and negative charge in an alkaline range. The glass beads coated with the coating sequence of(PDDA/TALH)n showed a change in the surface morphology as a function of the number of bilayers. When the number of bilayers(n) of the(PDDA/TALH) thin film was 20, Ti element was observed on the surface of the coated glass beads. The thin films coated onto the glass beads had a main peak of the (101) crystal face and were highly crystallized with XRD diffraction peaks of anatase-type TiO2 according to an XRD analysis. In addition, the TiO2 thin films showed photocatalytic properties such that they could decompose a methyl orange solution under illumination with UV light. As the number of bilayers of the(PDDA/TALH) thin film increased, the photocatalytic property of the TiO2-coated glass beads increased with the increase in the thin film thickness. The surface morphologies and optical properties of glass beads coated with TiO2 thin films with different coating numbers were measured by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD) and by UV-Vis spectrophotometry(UV-vis).
        4,000원
        120.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SnO2-mixed and Sn-doped TiO2 nanoparticles were synthesized via a hydrothermal process. SnO2-mixed TiO2 nanoparticles prepared in a neutral condition consisted of anatase TiO2 nanoparticles(diamond shape, ~25 nm) and cassiterite SnO2 nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped TiO2 nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile TiO2. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, 1~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the TiO2 in the rutile phase was doped with Sn. The photocatalytic activity of the SnO2-mixed TiO2 nanoparticles dramatically increased and then decreased when the SnO2 content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the TiO2 nanoparticles with the SnO2. In the case of Sn-doped TiO2 nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The SnO2-mixed TiO2 nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped TiO2 nanoparticles. This was caused by the phase difference of TiO2.
        4,000원