검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 644

        129.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We used three gas sensors to monitor hydrogen sulfide, ammonia, and volatile organic compounds (VOCs), which were frequently emitted from environmental facilities, such as municipal wastewater treatment, livestock manure treatment, and food waste composting facilities. Two electrochemical (EC) sensors for detecting hydrogen sulfide and ammonia, and a photoionization detector (PID) sensor for detecting VOCs were characterized in this study. The performance of their linearity by concentration levels, lower detection limit (LDL), repeatability, reproducibility, precision, and response time were tested under the laboratory condition. The linearity according to concentration levels were favorable for all three sensors with high correlation coefficients (R2 > 0.98). The ammonia sensor showed the highest LDL (18.6 ppb) and the hydrogen sulfide and VOC sensors showed 22.3 ppb and 26.7 ppb of LDL, respectively. The reproducibility and precision were favorable for all three sensors, indicating a lower relative standard deviation (RSD) than 0.9% in the reproducibility test and 7.2% in the precision test. The response times to reach target concentration were varied from 1 to 12 minutes. The ammonia sensor needed 12 minutes of response time at 1 ppm target the NH3 concentration and the hydrogen sulfide and VOC sensors needed less than 2 minutes of response time.
        4,200원
        131.
        2019.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bacterial wilt caused by Ralstonia solanacearum is a major disease that affects tomato plants widely. R. solanacearum is a soil born pathogen which limits the disease control measures. Therefore, breeding of resistant tomato variety to this disease is important. To identify the susceptible variety, degree of disease resistance has to be determined. In this study, micro sap flow sensor is used for accurate prediction of resistant degree. The sensor is designed to measure sap flow and water use in stems of plants. Using this sensor, the susceptibility to bacterial wilt disease can be identified two to three days prior to the onsite of symptoms after innoculation of R. solanacearum. Thus, this find of diagnosis approach can be utilized for the early detection of bacterial wilt disease.
        4,000원
        132.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wireless sensors are more favorable in measuring structural response compared to conventional sensors in terms of them being easier to use with no issues with cables and them being considerably cheaper. Previous tests have been conducted to analyze the performance of MEMS (Micro Electro Mechanical Systems) sensor in sinusoidal excitation tests. This paper analyzes the performance of in-built MEMS sensors in devices by comparing with an ICP sensor as the reference. Earthquake input amplitude excitation in shaking table tests was done. Results show that MEMS sensors are more accurate in measuring higher input amplitude measurements which range from 100gal to 250gal than at lower input amplitudes which range from 10gal to 50gal. This confirms the results obtained in previous sinusoidal tests. It was also seen that natural frequency results have lower error values which range from 0% to 3.92% in comparison to the response spectra results. This also confirms that in-built MEMS sensors in mobile devices are good at estimating natural frequency of structures. In addition, it was also seen that earthquake input amplitudes with more frequency contents (Gyeongju) had considerably higher error values than Pohang excitation tests which has less frequency contents.
        4,000원
        134.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.
        4,000원
        139.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, the low-cost wireless MEMS sensor has high noise density and transmits the signal wirelessly, so data transmission delay occurs during measurement. Therefore, the footbridges that was previously measured by a mobile phone in 2014 was remeasured using G-Link-200, iPad and iPhone to compare their performance.
        4,000원
        140.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 수면무호흡증이 다양한 합병증을 유발하는 질병으로서, 이를 위한 표준화된 수면다원검사가 고가 이며 측정이 불편함을 고려하여, 환자가 익숙한 환경에서 검사를 받을 수 있도록 스트레치 섬유센서를 이용한 무구 속 상태의 웨어러블 모니터링 시스템을 개발하고자 한다. 또한, 의복과 일체화된 디자인으로 제품화하여 그 유용성을 제안하고자 한다. 성인 남성용 롱 슬리브 티셔츠 형태로 착용형 수면무호흡 모니터링 스마트 의류를 개발하여, 수면무호흡 진단 지표 중 섬유형 센서를 기반으로 측정하는 호흡수(breathing rate)측정용 섬유센서, 산소포화도 (oxygen saturation), 호흡기류(airflow)를 실시간 측정하였다. 최적의 조합비 샘플 4가지를 통한 gauge factor를 측정한 결과, gauge factor 20.3을 확인하였고, 3회 숨을 크게 내쉴 때 호흡유량이 최대 2048ml였다. 산소포화도 69.45% 로 최소 측정 가능 산소포화도 70% 정도의 결과를 나타내었다. 세탁 후 인장에 따른 센서 성능 평가 결과는 전체적으로 gauge factor 18 수준의 값으로, 세탁에 대한 내구성이 입증되었다. 본 연구를 통하여 수면무호흡증 환자의 수 면효율이 떨어지고 여러 합병증을 동반하는 문제에 대해, 가정에서 쉽게 사용할 수 있는 착용형 수면무호흡 모니터 링 스마트 의류를 개발하여 호흡수, 호흡유량, 산소포화도의 3가지 지표를 측정 가능함을 확인하였다.
        4,300원