본 연구에서는 대파의 가락시장 도매가격을 이용하여 기존 시계열 모형인 ARIMA 모형, 홀트-윈터스 평활법과 대표적인 기계학습 방법인 랜덤 포레스트(Random forest) 분석 기법의 가격 예측력을 비교하였다. 세 모형의 예측력을 분석한 결과는 다음과 같다. 가장 예측력이 높게 나타난 모형은 3년(36개월)을 주기로 설정한 ARIMA 모형이었다. 또한 ARIMA 모형과 홀트-윈터스 평활법은 일별 데이터보다 월별 데이터를 이용한 예측 결과의 정확도가 더 높아 훈련 데이터에 대한 과적합(overfitting)이 오히려 예측력을 낮추는 현상을 보였다. 반면, 랜덤 포레스트는 월별 데이터 보다 일별 데이터를 사용한 모형의 예측력이 더 높았다. 이는 학습량이 많을수록 높은 예측력을 보여주는 기계학습의 특징을 보여주었다. 그러나 기계학습 방법을 활용한 가격 예측에는 가격에 영향을 주는 설명변수를 찾고, 양질의 훈련 데이터 축적이 필요하다는 것을 알 수 있었다. 향후 연구에서는 다양한 설명변수와 기계학습 및 딥러닝 기법을 적용한다면 농축산물 가격 예측력을 높이는데 도움이 될 것으로 판단된다.
The purpose of this study is to compare short-term price predictive power among ARMA ARMAX and VAR forecasting models based on the MDM test using monthly consumer price data of frozen mackerel. This study also aims to help policymakers and economic actors make reasonable choices in the market on monthly consumer price of frozen mackerel. To analyze this study, the frozen wholesale prices and new consumer prices were used as variables while the price time series data were used from December 2013 to July 2021. Through the unit root test, it was confirmed that the time series variables employed in the models were stable while the level variables were used for analysis. As a result of conducting information standards and Granger causality tests, it was found that the wholesale prices and fresh consumer prices from the previous month have affected the frozen consumer prices. Then, the model with the highest predictive power was selected by RMSE, RMSPE, MAE, MAPE, and Theil’s inequality coefficient criteria where the predictive power was compared by the MDM test in order to examine which model is superior. As a result of the analysis, ARMAX(1,1) with the frozen wholesale, ARMAX(1,1) with the fresh consumer model and VAR model were selected. Through the five criteria and MDM tests, the VAR model was selected as the superior model in predicting the monthly consumer price of frozen mackerel.
표고버섯 재배 임가들이 생산량과 출하 시기를 결정하는 데 가격은 결정적인 역할을 하지만, 표고버 섯 가격 전망에 대한 연구는 미진한 상황이다. 이 연구의 목적은 표고버섯의 중품, 상품, 특품의 월별 가격자료를 이용하여 시계열 분석 모형을 구축하고, 이들의 단기 가격 예측력을 비교하는 것이다. 이를 위해, 2002∼2015년 동안의 등급별 가락시장 표고버섯 가격자료를 이용하여 Seasonal Exponential Smoothing 모델, Seasonal ARIMA with intercept 모델, Seasonal ARIMA without intercept 모델, Seasonal Dummy 모델을 포함하는 네가지 형태의 시계열 분석 모형을 구축하고 단기 가격을 예측하였 다. 또 통계적 검증방법을 이용하여 이들 모델의 가격 예측력을 비교하였다. 분석 결과, Seasonal ARIMA without intercept 모형의 가격 예측 능력이 가장 우수한 것으로 나타났다. 향후 다른 단기 소 득 임산물의 가격 예측에도 이들 모델을 적용함으로써 임가들의 생산 출하에 대한 의사결정에 유용한 정보를 제공할 수 있을 것이다.
Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using statistical tools like ARIMA and their business indices. And for examples, Indium and Coal were introduced.
Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using ARIMA and their business indices. And for examples, Indium and Coal were introduced.