This study is to deal with a failure phenomenon that occurred during a vibration test on an Inertial Navigation System mounted on a self-propelled howitzer. Vibration occurs naturally due to the operation characteristics of self-propelled howitzers, The study describes a case of failure that occurred during the durability verification process. It explains the function and configuration of the INS(Inertial Navigation System) and describe how the failure occurred through understanding the phenomenon. Based on the occurrence phenomenon, an in-depth cause analysis was conducted and fundamental improvement measures were presented to prevent recurrence. It is expected that this study will aid as a reference for problem solving when similar failures occur in the future.
In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.
We have observed a phenomenon where the internal X capacitors of the input EMI filter experienced damage during operation. To solve the problem, we have analyzed the malfunction by identifying the characteristics and operating principles of EMI filter. Based on this analysis, we have derived improvement strategies and validated them through experiments. This paper help some people prevent the similar problem when developing the similar equipment and solve the similar problem of the similar equipment.
전 세계 90 %의 인구가 WHO의 연평균 미세먼지 노출 기준(10 ㎍/㎥)을 초과한 공기를 흡입하고 있다. 전 세계적으로 육상뿐 만 아니라 해양에서 발생하는 질소산화물에 대한 규제를 통해 2차 오염물질, 초미세먼지 저감에 대해 노력하고 있으며 국내에서는 선박에서 미세먼지 발생의 주요한 원인인 황 함유량 저감과 환경친화적 선박의 개발 및 보급 등을 통해 깨끗한 해양환경 조성을 위한 노력을 하고 있다. 디젤엔진 유해 배출가스 저감을 위한 기술 중 압력 손실이 적고 높은 집진 효율 및 NOx의 제거와 유지 관리의 장점이 많은 전기 집진기의 수요와 중요성이 증가하고 있다. 본 연구는 총톤수 999톤급 선박의 2,427 kW 선박용 디젤엔진의 미세먼지 저감을 목적으로 개발된 전기 집진기를 예지보전단계에서 고장모드영향분석을 통해 장비 품질을 높여 선박 내에서의 내구연한을 높이고자 위험 우선순위 도출하였다. 위험 우선순위는 고장모드 241(poor dust capture efficiency)이 RPN 180으로 가장 높았다. Collecting electrode 에서 가장 많은 고위험 고장모드를 검출하여 집중관리 부품으로 관리해야 할 필요가 있었으며 원인으로 진동과 핀 풀림으로 인한 유 격 불량이 가장 많이 검출되었다. 핀 풀림 역시 근본적으로는 선체 또는 장비에서 발생하는 진동이 원인이 되어 발생할 수 있는 사항이기 때문에 핀 풀림이 발생하는 개소에 보완이 필요하겠다.
As the duty to report and investigate major elevator failures has expanded due to the total amendment of the Elevator Safety Management Act in 2018, more important information on major elevator failures that have been partially identified has been collected. As of 2019, the number of elevators in Korea exceeded 700,000, making it the eighth-class elevator powerhouse in the world, but there is a trend of increasing casualties due to accidents and breakdowns. An Seung-gang-gi is a term that encompasses an elevator that moves vertically and an escalator that moves horizontally. It is an important means of transportation for most citizens that are encountered almost every day in daily life, and it is also necessary as a means of transportation that enables the construction of skyscrapers. And it seems that its importance will never diminish in the future. Major elevator failures are the main cause of dispatch when accumulating the number of 119 dispatches, and the frequency of occurrence is high. It's a shame. According to Heinrich's Law, 300 minor signs and danger phenomena precede, 29 minor accidents and 1 major accident. Accidents caused by elevators are increasing every year due to the increase in the number of installations, and the damage is threatening the valuable lives and property of users and workers in related fields due to fatal risks such as death and serious injury. Elevator safety management can achieve its purpose only when it is managed with the usual interests, awareness of safety, and full efforts of the users, workers, and the government concerned. This study was analyzed based on 2019 data notified to the Korea Elevator Safety Agency on major breakdowns improved after the revision of the Elevator Safety Management Act in 2018, and a total of 8,256 data were analyzed using the SPSS 21 version, a statistical analysis tool, to analyze the correlation with technical statistics. Proceeded. Through the analysis, it was possible to obtain preventive safety management data to prevent serious elevator safety accidents from occurring, and to derive meaningful implications that related safety management and maintenance can be effectively operated to prevent serious failures. In addition, through this analysis, we expect the development of related industries and legal and institutional improvement.
Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship’s operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively.Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.
When weapon system is designed and developed, a reliability is one of important factors to determine the development goal. The reliability analysis of the weapon system and equipment is based on MIL Specification, MIL-HDBK-217F and MIL-HDBK-338B. And the weapon system is operated on various environments by operating concept of the military using the weapon system. This study, at first, present failure rate by PSA comparing with failure rates by PCM, the different reliability analysis method, for same CCA(Circuit Card Assembly). And the study present change of reliability analysis results for CCA on various operation environment condition..
In this paper, we present a new way to derive the mean cycle time of the G/G/m failure prone queue when the loading of the system approaches to zero. The loading is the relative ratio of the arrival rate to the service rate multiplied by the number of servers. The system with low loading means the busy fraction of the system is low. The queueing system with low loading can be found in the semiconductor manufacturing process. Cluster tools in semiconductor manufacturing need a setup whenever the types of two successive lots are different. To setup a cluster tool, all wafers of preceding lot should be removed. Then, the waiting time of the next lot is zero excluding the setup time. This kind of situation can be regarded as the system with low loading. By employing absorbing Markov chain model and renewal theory, we propose a new way to derive the exact mean cycle time. In addition, using the proposed method, we present the cycle times of other types of queueing systems. For a queueing model with phase type service time distribution, we can obtain a two dimensional Markov chain model, which leads us to calculate the exact cycle time. The results also can be applied to a queueing model with batch arrivals. Our results can be employed to test the accuracy of existing or newly developed approximation methods. Furthermore, we provide intuitive interpretations to the results regarding the expected waiting time. The intuitive interpretations can be used to understand logically the characteristics of systems with low loading.
Diesel engines show better thermal efficiency and fuel consumption, but diesel engines typically generate more NOx emissions because of lean-burn conditions. Therefore, it is necessary to reduce the emissions of diesel engines either by efficiently controlling combustion or by employing exhaust gas after-treatment systems. In this study several problems we're observed in a SCR system and Engine control system. The analysis result, new technology SCR is suitable for the vehicle with low temperature operating condition. Through this analysis we can find out more effective repair factors from the various fault in SCR component.
Failure modes and effects analysis (FMEA) is a widely used engineering tool in the fields of the design of a product or a process to improve its quality or performance by prioritizing potential failure modes in terms of three risk factors―severity, occurrence, and detection. In a classical FMEA, the risk priority number is obtained by multiplying the three values in 10 score scales which are evaluated for the three risk factors. However, the drawbacks of the classical FMEA have been mentioned by many previous researchers. As a way to overcome these difficulties, this paper suggests the ELECTRE III that is a representative technique among outranking models. Furthermore, fuzzy linguistic variables are included to deal with ambiguous and imperfect evaluation process. In addition, when the importances for the three risk factors are obtained, the entropy method is applied. The numerical example which was previously studied by Kutlu and Ekmekioğlu(2012), who suggested the fuzzy TOPSIS method along with fuzzy AHP, is also adopted so as to be compared with the results of their research. Finally, after comparing the results of this study with that of Kutlu and Ekmekioğlu(2012), further possible researches are mentioned.
An accident related with elevators can cause death or serious injury of operators or passengers. This kind of a fatal accident is due to a failure of elevator. The reduction of failures of elevators is important to reduce the occurrence of elevator accident. Thus, this paper presents the results of analysis for the failure of elevators using the failure data of elevator. The results of analysis can be used to make a maintenance process of elevators.
In modern systems design and development, one of the key issues is considered to be related with how to reflect faithfully the stakeholder requirements including customer requirements therein, thereby successfully implementing the system functions derived from the requirements. On the other hand, the issue of safety management is also becoming greatly important these days, particularly in the operational phase of the systems under development. An approach to safety management can be based on the use of the failure mode effect and analysis (FMEA), which has been a core method adopted in automotive industry to reduce the potential failure. The fact that a successful development of cars needs to consider both the complexity and failure throughout the whole life cycle calls for the necessity of applying the systems engineering (SE) process. To meet such a need, in this paper a method of FMEA is developed based on the SE concept. To do so, a process model is derived first in order to identify the required activities that must be satisfied in automotive design while reducing the possibility of failure. Specifically, the stakeholder requirements were analyzed first to derive a set of functions, which subsequentially leads to the task of identifying necessary HW/SW components. Then the derived functions were allocated to appropriate HW/SW components. During this design process, the traceability between the functions and HW/SW components were generated. The traceability can play a key role when FMEA is performed to predict the potential failure that can be described with the routes from the components through the linked functions. As a case study, the developed process model has been applied in a project carried out in practice. The results turned out to demonstrate the usefulness of the approach.
대기부품은 대기기간 중에 우발적 고장이 발생할 수 있으며(type I failure), 해당상황이 장기간 방치되는 것을 방지하기 위해 주기적인 검사를 하는 것이 일반적이다. 그러나 검사가 대기기간 중 발생한 고장을 확인할 수 있게 하는 반면, 검사를 시작할 때 대기하던 부품에 부하를 가하는 과정에서 고장을 유발할 가능성이 존재하며(type Ⅱ failure), 검사시간동안 대기부품을 작동시킴으로써 열화에 의한 고장발생(type Ⅲ failure)의 가능
Reliability tools such as QFD and FMEA identify voice of customer related to product design, its use, how failures may occur, the severity of such failures, and the probability of the failure occurring. With these identified items, a development team can