검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design of buried underground flexible pipes proposed in domestic standards does not properly reflect changes in ground characteristics. Overseas standards suggest that pipe deflection must be considered while designing them. Therefore, in this study, the structural behavior of underground polyvinyl chloride pipes was investigated through experiments and the finite element analysis. In addition, when the pipe deflection occurred at 3% and 5%, the hydraulic characteristics of the polyvinyl chloride pipe showed a slight difference compared to the round pipe.
        4,000원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 조립트러스 매립형 합성보의 실험과 해석을 통하여 휨 및 전단의 구조적 거동을 분석한다. 본 합성보는 복부가 개방된 트러스를 콘크리트 속에 매입함으로써 콘크리트와의 맞물림작용 및 일체성이 뛰어남으로 휨재로서 완전합성 거동을 한다. 본 합성보에서는 콘크리트 단면의 복부를 가로지르는 외곽 2열의 강재 복재가 상, 하 접합부로 긴결되어 있어서 철근콘크리트 보의 스터럽(Stirrup)과 같은 전단보강재의 역할을 한다. 그러나 본 합성보에서는 복재 접합부의 강도에 따라서 전 단보강재인 경사재 및 수직재의 전단내력이 변화되므로 이에 맞는 구조적 안전성이 확보된 새로운 전단강도식을 제안한다. 실험 및 해석결과, 조립트러스 매립형 합성보의 모든 실험체는 휨강도에 대하여 강재앵커가 있는 완전합성보로 평가되며, 제안된 전단강도식은 구조적 안전성이 충분히 확보된 것으로 평가된다.
        4,300원
        3.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스페이스 하우스는 강재 프레임에 FRP와 우레탄 폼을 결합한 합성패널로 구성된 단위모듈방식의 프리캐스트화한 구조물이다. 이 연구는 모듈러 건축물의 한 종류인 스페이스 하우스의 설계와 구조적 거동을 예측하였다. 스페이스 하우스의 하중 저항은 대부분 강재 프레임에서 발생하기 때문에 직육면체 형태의 강재 프레임 구조물에 수직보강재를 보강하여 제작하였다. 또한, 구조물의 안전성을 확보할 수 있도록 구조 검토와 유한요소해석을 통해 구조물의 사용성과 안전성을 확인하였다.
        4,000원
        4.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the sewer pipes, reinforced concrete pipes and concrete pipes are mostly used. However, it is difficult to ensure the long-term durability of the pipe due to the corrosion of the rebar which is used for the reinforcement of the concrete. Also, reinforced concrete pipes are difficult to secure watertightness due to deterioration and corrosion by hydrogen sulfide. In order to solve such problems, research on using sewer pipes made of plastic materials is being actively conducted. When soil pressure and live load act on the buried flexible pipe, the load acting on the pipe is transferred to the surrounding soil. So, the flexible pipe will support the load with the surrounding soil together. It is difficult to predict these behaviors theoretically and clearly. Therefore, the design equation for the buried flexible pipe is analyzed by adopting theoretically idealized assumptions and it is estimated through experimental studies that it is similar to the actual structural behavior. In this paper, the mechanical properties of the soil and the polyethylene pipe were considered in application of the method proposed in ASTM D 2412 to design the buried polyethylene pipe. Also, structural behavior of the pipe resisting external loads such as soil pressure was investigated to use a polyethylene pipe as the buried pipe and the long-term behavior of the polyethylene pipe was predicted by the compaction rate of surrounding backfill soil through the field test.
        4,000원
        5.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Hong Nang Sida temple is a cultural heritage that must be preserved due to the historical and cultural values that are highly evaluated in the world. The main sanctuary of Hong Nang Sida temple, presumed to have been built in 11th to 12th centuries, has been exposed in the open air for a long time after the collapse. Therefore, it is necessary to reconstruct the original shape of the Hong Nang Sida temple to reflect the original shape. To do this, it is necessary to examine the overall structure according to the restoration shape. For this purpose, this study analyzes the construction and configuration types for main sanctuary Mandapa of Hong Nang Sida temple, and conducts structural modeling according to actual and restoration plans. The structural and behavioral characteristics are analyzed by comparing stress and displacement values by measurement locations. In addition, we will examine the vertical load distribution by the layers of each wall and cobel arch of the Mandapa using the load distribution method.
        4,000원
        6.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The industrialization and urbanization forced to increase the density of pipelines such as water supply, sewers, and gas pipelines. The materials used for the existing pipe lines are mostly composed of concretes and steels, but it is true that the development for more durable and efficient materials has been continued performed to produce long lasting pipe lines. Recently, underground pipes serve in diverse applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. In this paper, we present the result of investigation pertaining to the structural behavior of unplasticized polyvinyl chloride (PVC-U) flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, pipe stiffness, 4-point bending test, experimental and analytical studies are conducted. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is about 8% although there are significant variations in the mechanical properties of the pipe material. In addition, it was found by the 4-point bending test there is no problem in the connection between the pipes by coupler.
        4,000원
        7.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.
        4,000원
        8.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.
        4,000원
        9.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to rapid urbanization and industrialization, water supply and sewer line systems are also developed relevantly. Manhole is an essential component structure of the pipeline system. Manhole is a structure constructed to accommodate the direction, dimension, differences in level, and easy of maintenance in the pipeline system. In this paper we present the result of investigations pertaining to the structural behavior of PVC sewer manhole buried underground. In the paper mechanical properties of PVC material are reported. In addition, by the finite element analysis (FEA), we confirmed that a PVC double-wall corrugated pipe manhole, when it is buried underground, is safe for the stress as well as buckling strength if the manhole is constructed within the suggested limit of buried depth.
        4,000원
        10.
        2014.04 구독 인증기관·개인회원 무료
        To inject CO2 in geological formations, deep wells that penetrate the formations need to be constructed. The seal integrity of deep wells for CO2 leakage are enhanced by annulus cements. By injecting CO2, brine in formations can be carbonated and the potential degradation of annulus cement in the carbonated brine has been brought up. In this paper, Type G oil well cement (OWC) pastes are hydrated for 28 days. Conditions of geosequestration in a sandstone formation at a depth of roughly 1 km, was simulated by bubbling CO2 into a heated vessel containing brine. The hydrated OWC cylindrical specimens were exposed to this environment. Slices of the cement specimen were taken periodically, during and after exposure to quantify degradation progression. The elastic modulus of the specimens was examined prior to and after exposure. After 28 days of exposure, the degraded depth of specimen was measured as 4.137 mm. The elastic modulus of the specimens was measured as 2.2 GPa and 3.2 GPa prior to and after exposure respectively. Considering a composite action in the partially degraded specimen, the elastic modulus of degraded part can be extracted. The results indicated that the difference of elastic modulus in the partially degraded annulus cements could occur a composite action of deep wells subject to axial load and shear cracks would be generated due to the composite action.
        11.
        2012.04 구독 인증기관·개인회원 무료
        In this paper, we present the results of experimental investigation pertaining to the structural behavior of Tee joint connection composed of pultruded I-shape FRP members. In this study, we focus on the evaluation of load carrying capacity of Tee joint which appeared frequently to fabricate framed structure composed of pultruded FRP members. Through the experimental investigation moment-rotation relationship is found and the result is used to estimate the rotaion stiffness.
        12.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.
        4,000원
        13.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,200원
        14.
        2004.03 구독 인증기관 무료, 개인회원 유료
        본 논문은 국내의 콘크리트 교면포장에 주로 발생하는 아스팔트 포장의 파손유형들에 대한 현황 분석과 교량 상판과 포장의 상호작용 해석을 실시하여 주된 파손유형을 제시하고자 한다 연구의 범위는 PSCI형교, 철근콘크리트 슬라브교와 라멘교를 각각 대상으로 하였다. 조사결과 콘크리트 교면 아스팔트 포장의 주요 파손들은 소성변형, 포트홀 그리고 피로균열 순으로 확인되었다. 또한 교면 아스팔트 포장에 발생되는 피로균열의 경우 주된 파손인자가 교통하중의 반복보다는 포장의 노후화나 재료의 박리와 같은 재료 문제로 추정되며 실제조사에서도 콘크리트 교량의 경우 미세한 파손의 빈도가 높고 박리가 있는 지점에서 균열이 상대적으로 많이 발생되었다.
        4,200원
        15.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문은 샌드위치식 강-콘크리트 복합구조체에서 상하 강판과 격벽으로 구성되는 셀의 형상비가 거동과 성능에 미치는 영향을 다루었다. 이 구조체에서 셀 형상비는 하중전달 메카니즘과 하중분배능력을 변화시킨다. 따라서 셀 형상비에 따라 부재의 응력수준과 하중저항능력이 변화한다. 이 연구에서는 셀 형상비가 이 구조체의 거동과 성능에 미치는 영향을 규명하기 위해, 두 종류의 샌드위치식 복합구조체에 대해 다양한 셀 형상비를 설정하여 비선형 구조해석을 수행하였다. 해석결과로부터 셀 형상비에 따른 하중전달 메카니즘과 부채 응력에서의 차이점을 도출하였으며, 이들 차이점을 바탕으로 셀 형상비가 전단성능, 휨성능, 하중저항성능에 미치는 영향을 분석하였고, 파괴모드와 연성에 미치는 영향에 대해서도 간략히 언급하였다. 연구결과, 셀 형상비가 증가함에 따라 하부 강판과 콘크리트의 응력수준이 낮아지는 결과를 나타내었다. 이것은 각 부재의 유효휨강성과 유효전단강성 증가를 나타내며, 따라서 구조체의 하중저항성능도 향상되는 것으로 판단된다. 특히 셀 형상비의 증가에 따른 성능향상에서 전단성능이 휨성능에 비해 더 큰 효과를 나타내며, 이러한 차이는 파괴모드와 연성에도 영향을 미칠 것으로 판단된다. 즉, 셀 형상비가 증가함에 따라 구조물의 거동 및 파괴모드는 점차적으로 전단에서 휨으로 변화하고, 이에 따라 구조물의 연성도 점차적으로 향상될 것으로 판단된다.
        4,300원
        16.
        2018.10 서비스 종료(열람 제한)
        An experimental study was conducted to examine for the structural behavior of coupled steel plate shear wall (Coupled SPSW) system what is formed by connection the two steel plate shear walls (SPSW) with a coupling beam. The variable of this study was the length of coupling beam. The testing results were showed that the strength and stiffness of specimen with shorter coupling beam were improved than those of other specimen. However there is no difference of the yielding mechanism.
        17.
        2018.10 서비스 종료(열람 제한)
        The purpose of this study is to investigate the ultimate strength of carbon steel (SS400) fillet-welded connections with weld metal fracture through monotonic tensile test. Specimens of CTFW series (transverse fillet weld against loading direction), CLFW series (longitudinal fillet weld against loading direction) and CFW series (a combination of transverse weld and longitudinal weld) failed by tensile fracture, shear fracture and block shear fracture, respectively. Test strengths were compared according to welding direction and weld length
        18.
        2017.09 서비스 종료(열람 제한)
        In this paper, the flexural test of concrete member damaged due to Calcium leaching were performed to evaluate the characteristics of structural behavior. From the results, yield load, maximum load and flexural rigidity of RC member damaged by calcium leaching were decreased and the depth of the neutral axis was increased.
        19.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted , and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.
        20.
        2015.10 서비스 종료(열람 제한)
        Austenitic stainless steels have excellent corrosion resistance, durability, aesthetic appeal, fire resistance etc. compared with ferritic stainless steels and so especially 304 stainless steels have been utilized widely in the exterior member of building structure. In this paper, ultimate behaviors such as ultimate strength and fracture mechanism of fillet-welded connections with TIG(tungsten inert gas) welding have been investigated through test results. Main variables of specimens are weld length and welding direction against loading and ultimate strengths were compared according to the variables.
        1 2