In this paper, among the various facilities used in marine farming, young bivalves of the Mytilus galloprovincialis of marine farming was placed on the deck of the fishing vessel to evaluate the environment conditions and drive shaft movement by rolling affecting the separator for the young bivalves and a clean process. There were a few studies on stress analysis of development facilities because it was difficult to access the fishing site due to the use of imported equipment and the lack of development of domestic equipment. In this study, stress analysis of the fixed part of separator for young bivalves and its adjacent part was performed on various phases when the vessel was tilted by rolling using the finite element method. In addition, the structural safety of the internal blade under the driving conditions according to the movement of the drive shaft by the hydraulic motor was confirmed through structural analysis. As a result, the connection part between the deck and the separator by rolling was confirmed to have higher stress than that of other parts due to stress concentration. In addition, it was confirmed that the maximum stress occurred on the connection part between blades. Even though the safety of the separator for marine farming was confirmed by structural analysis, it is necessary to comprehensively consider the age of vessels, the material of the deck, and the corrosion of the deck.
This paper proposes a method to evaluate the structural safety of a large wide-width greenhouse structure against wind load caused by a typhoon through a fluid structure interaction analysis technique. The conventional method consisted of roughly estimating the wind load based on the relevant laws and regulations, and determining safety through structural analysis. However, since the wind load changes nonlinearly according to the wind speed distribution and wind direction around the greenhouse and the external shape of the structure, there are many uncertainties in the existing structural safety evaluation method, and it is difficult to accurately determine the design margin. In this study, a systematic method was developed to accurately calculate the wind load acting on a greenhouse structure and evaluate structural safety by considering the characteristics of wind through a fluid structure interaction analysis using coupled computational fluid dynamics and computational structural mechanics. Using the proposed method, it is possible to significantly reduce the manufacturing cost because it is possible to obtain an optimal design that reduces the over-conservative design margin while securing the structural strength of the greenhouse.
In this study, we collect water control valves that have had accidents due to existing cracks, etc. are collected, and propose investigation items for strengthening the valve structural safety evaluation through a series of analyzes from valve specifications to physicochemical properties are proposed. The results of this study are as follows. First, there was a large variation in the thickness of the body or flange of the valves to be investigated, which is considered to be very important factor, because it may affect the safety of the valve body against internal pressure and the flange connected with the bolt nut. Second, 60% of the valves under investigation had many voids in the valve body and flange, etc. and the decrease in thickness due to corrosion was relatively large on the inner surface in contact with water rather than the outer surface. It is judged that the investigation of depth included voids is very important factor. Third, all valves to be investigated are made of gray cast iron foam, and therefore it is judged that there is no major problem in chemical composition. It is judged that the chemical composition should be investigated. Fourth, as a physical investigation item, the analysis of metal morphology structure seems to be a very important factor for nodular cast iron from rather than a gray cast iron foam water valve with a flake structure. As it was found to be 46.7~68.8% of the standard recommended by KS, it could have a direct effect on damage such as cracks, and therefore it is judged that the evaluation of tensile strength is very important in evaluating the safety of the valve.
The objective of this study is to evaluate the structural safety of the spherical-helical turbine for hydro-power. We analyze fluid-structure interaction of the spherical-helical turbine for hydro-power using ANSYS-CFX and Mechanical. The maximum combined stress, deformation and safety factor of the spherical-helical turbine in cases of three types of materials were obtained by fluid-structural analysis. From structural analysis, the maximum value of the equivalent stress occurred at the shaft of the turbine for three material types. In case of a polyethylene turbine blades, the maximum equivalent stress and safety factor were 3.46 MPa and 7.23. Polyethylene turbine blades were evaluated to be safe except of the turbine shaft. Several researches will be performed based on the results of this study and more research and development of technologies are needed in this field.
This study presents a structural safety analysis method for a plant annunciator panel under the seismic effect. Seismic qualification analysis for the nuclear plant annunciator panel is carried out to confirm the structural integrity and the results are represented by required response spectra. For the numerical analysis, finite element method is adopted. Mode combinations are also used to obtain the reliability of the spectrum analysis. The analysis results shows that the nuclear plant annunciator panel is designed as a dynamically rigid assembly, without any resonance frequency blow 33Hz. The calculated stress of the nuclear plant annunciator panel is much less than yield stress of used steel.
This study aims to evaluate structural safety through FEM on the hollow shaft and the shaft filled with aluminum foam as the impact beam made of high tensile strength steel, Force reactions of impact beams are investigated when the forced displacement of 50mm is applied equally on two beams. When impact velocity of 80km/h is applied onto impact beams equally with the limit velocity of automobile on national road, how much impact energies can be absorbed by beams are also investigated. As study result, impact beams without aluminum foam and with aluminum foam show the maximum reaction forces of 15.53kN and 20.34kN respectively in case of the forced displacement of 50mm. As impact analysis result, impact beams without aluminum foam and with aluminum foam can absorb impact energies of 560J and 820J respectively. As impact beam with aluminum foam has reaction force and impact energy more than 23% and 30% than without aluminum foam, impact beam with aluminum foam has more safety than without aluminum foam.
본 연구의 대상은 1-2W 기본형 온실의 기둥을 절단하여 동일한 규격의 파이프로 용접하여 온실의 측 고를 높인 온실이다. 이와 같이 개조형 온실에 풍하중이나 적설하중이 작용할 경우, 어떠한 형태로든 용 접부위에는 구조적으로 불안전 할 것으로 판단된다. 이를 검토학기 위하여 4단계에 걸쳐 용접된 기둥에 대한 굽힘 강도를 측정하여 용접하지 않은 원상태의 파이프와 비교 검토한 결과는 다음과 같다. 온실구조용 강관에 대한 용접결합부의 굽힘 시험의 경우, 하중재하 방법에 관계없이 양단 지점부위와 하중 재하부위가 하중을 견디지 못하고 함몰되는 현상을 보임으로서 합리적인 결과를 도출할 수가 없었 다. 따라서 지점 및 하중 재하부위에 내부 파이프 (봉강)을 삽입함으로서 부분적인 문제점을 보완할 수 있었지만, 보다 합리적인 굽힘 시험 방법이 고안되어야 할 것으로 판단되었다. 용접결합부의 강도는 원형 상태에 비해 별 차이를 보이지 않았고, 시료의 제작 조건에 따라 경미한 차이를 보였으나, 용접 과정에서 부실의 정도가 결정적인 강도 손실을 유발할 수 있음이 예상되었다. 용접결합과정의 문제점이나 접합 작 업 후, 기둥 부재의 기울어짐 등에 대한 문제점이 없다는 전제 하에 용접한 파이프의 강도는 일반적으로 원형상태의 강도에 비해 약 84~90% 정도로 가정함이 합리적일 것으로 판단되었다. 그리고 접합부의 녹 발생이나 기타 용접결합에 따른 중장기적 강도 저하 등을 고려할 때, 부득이한 경우가 아니라면 현재 농 가에서 시도되고 있는 온실의 주요 부재에 대한 구조변경 등은 구조안전성 측면에서 지극히 삼가 되어야 할 것으로 판단되었다.
가압경수로(PWR)에서 배출되는 고준위폐기물을 지하 500m의 화강암 암반의 처분장에 장기간(약 10,000년 동안) 처분하기 위하여 여러 구조적 안전성 평가 수행을 통하여 처분용기모델이 개발되었다. 기존에 설계된 가압경수로용 처분용기 모델은 구조적 안전성은 문제가 없으나 너무 무거운 단점이 지적되었다. 따라서 구조적 안전성을 유지하면서 좀 더 경량화 된 처분용기모델을 개발하는 것이 요구된다. 기존의 처분용기모델이 무거워진 한가지 이유는 처분용기 개발 시 적용된 외력조건 및 안전계수 등에 대한 조건들을 너무 엄격하게 적용했기 때문이라고 사료되기 때문에 이런 조건들을 완화하여 처분용기의 재원들을 조정하여 구조해석을 다시 수행하는 것이 요구된다. 따라서 본 논문에서는 설계 완성된 기존의 처분용기에 대하여 외력 조건 및 용기의 재원(두께 등) 들을 변화시키면서 구조해석을 재 수행하여 구조적 안전성 평가를 보완하였다. 이를 바탕으로 외력 조건에 따른 처분용기의 재원 등을 재 산출한다. 보완 해석 결과 기존의 122cm의 처분용기의 직경을 102cm까지 줄여 경량화 시킬 수 있음이 확인되었다.
한국형처분시스템에 이용될 가압경수로형 사용후핵연료를 위한 KDC-1 처분용기를 개발하였다. 처분용기 안전성 평가의 일환으로서 처분용기에 대한 구조적 안전성을 평가하였다. 처분용기의 구조적 안전성은 처분조건과 취급조건 2가지로 구분하여 평가하였다. 처분조건에서는 3가지 하중 조건, 정상하중 조건, 비정상 하중 조건, 암반의 움직임을 고려하였다. 처분조건에서 평가 결과 3가지 조건에 대해 모두 안전계수가 설계기준보다 컸다. 취급조건에서는 처분용기 취급 중 구조해석과 처분용기 낙하 사고시 구조해석을 수행하였다. 취급장비 고장 시나리오 평가결과 1개 혹은 2개의 취급 장치가 고장을 일으켰을 때도 취급장비를 계속 운전하는 것이 가능하였다. 처분용기 낙하 시나리오에서는 계산결과 최대 응력은 0.762 MPa 이었으며, 이 값은 주철의 항복응력과 비교하면 거의 무시할 수 있는 값이었다. 본 논문에서 제안한 KDC-1 처분용기에 대한 처분조건 및 취급조건에서의 구조해석 결과, 한국형처분시스템에서 고려하고 있는 조건에서 그 구조적 안전성을 확인하였다.
한국원자력연구소에서는 현재 사용후핵연료의 효율적인 관리를 위한 차세대관리 종합공정의 실증용 핫셀을 건설중에 있다. 이 핫셀에서 모든 물품의 반출입은 후면 차폐문을 통해 이루어지므로 차폐문의 사용빈도가 매우 크며, 따라서 후면 차폐문의 구조적 안전성 유지가 필수적이다. 본 논문에서는 핫셀의 후면 차폐문에 대한 구조적 안전성을 유한요소 해석을 통해 평가하였다. 후면 차폐문을 닫을 때 벽면의 차폐문틀과 충돌하면서 발생하는 구조적 변형 에 대한 안전성 평가를 위해 이 상황을 충돌-접촉 문제로 가정하고 동적 해석을 수행하였다. 또한 충돌시 반력에의한 후면 차폐문의 전도 가능성 및 이동중 갑작스럽게 정지할 경우 관성에 의한 전도 가능성에 대해서도 해석을 수행하였다. 해석 결과를 통해 차폐문과 차폐문틀 모두 충돌에 의한 구조적 변형에 대해 충분히 안전함을 확인할 수 있었으며, 여러 사고 조건에 대해서도 후면 차폐문의 전도가 일어나지 않고 안정성을 유지함을 보였다.