프로바이오틱스 제품에 대한 수요가 지속적으로 증가하 고 있으며, Lactobacillus 균주가 가장 대중적인 프로바이 오틱스로 널리 사용되고 있다. 프로바이오틱스는 기준에 적합한 균수의 확보가 중요하며 제조원가나 시간 등을 낮 추기 위해 배양법의 개발이 필요하므로 Lactobacillus 생 산을 위한 배양 조건이 최적화되었다. 반응표면방법론에 의한 통계적 최적화에서 반응 변수에 영향을 미치는 독립 변수의 최적 조건은 Lactobacillus acidophilus의 경우 22.55 시간(배양시간), 25oC(배양온도), 3.41%(프리바이오틱스 농 도); Lactiplantibacillus plantarum의 경우 24시간, 30.86oC, 2.00%; Lacticaseibacillus rhamnosus의 경우 66.67시간, 35oC, 3.41%이었다. Lactobacillus의 최적 배양조건은 예측 한 결과와 실제 결과가 밀접하게 일치하는 것을 확인하였 다. 이러한 데이터는 수율 높은 Lactobacillus를 생산하는 데 중요한 포인트를 제공할 것이다.
단계별 작업기를 통합하여 일관화하는 복합기를 실용화하여 생산효율이 개선되어 밭농업 생력화에 기여하였다. 본 연구의 목적은 SAS를 이용한 복합작업기의 최적 작업조건을 반응표면기법(RSM)으로 구명하고 최적 성능을 실험으로 평가하여 집약적 밭농업의 트랙터 운용방법을 제시하고자 하였다. 로터리 작업에서 회전속도와 전진속도의 관계는 견인력의 효율성과 멀칭 등 작업품질에 적정한 트랙터의 운용기준 조건을 나타낸다. 슬립과 공차를 고려하면 통합 선택기준 작업속도는 3.4<SPDcr<4.7 km/h 범위로 확장되고, 로터리 피치(p)가 40<p<56 cm/rev로 판단되었다. 여러 검토조건에 서 연료소비량을 예측하고 동력의 효율성을 평가하는데 Kim 모델이 사용되었다. 목적함수를 만족하는 적정 p의 범위에 속하는 공칭 작업속도(SPD)를 엔진속도비(n)와 주행 기어비(GR)로 나타내어 최적 설계점은 카테고리 1급(DK450) 트랙터에 대하여 독립변수 n, GR/변속단수는 0.65, 401/M4로 구명되었다. 실험 평가에서 작은 트랙터는 시뮬레이션과 비교적 일치하였고, 큰 트랙터의 실험은 낮은 연료소비량과 실작업속도로 오차를 유발하였다.
본 연구는 고온과 연속광 조건 하의 복합 스트레스 환경에서 실내 관엽식물이 어떤 엽록소 형광 반응을 나타내는지에 대해 조사 및 분석했다. 대부분의 실내 관엽식물은 이와 같은 스트레스 조건에서 광도가 높아질수록 Fo, Fj 단계에서 형광 밀도가 증가하고 Fi, Fm 단계에서 형광 밀도가 감소한 것으로 나타나 광계II의 반응중심에 있는 전자수용체 퀴논의 상당량이 환원상태에 놓여있음을 암시했다. 뿐만 아니라 최대 양자효율과 최대 양자수율을 나타내는 Fv/Fm와 ΦPo는 광도가 높아질수록 낮게 나타났고 반대로 에너지 소산을 나타내는 DIo/RC 값은 광도가 높아지는 것에 비례하여 높게 나타났다. 이를 미루어보아 고광도 수준에서는 대부분의 광자가 제대로 활용되지 못했음을 알 수 있었다. 특히나 아이비와 테이블야자 는 고온 및 연속광 조건에서 현저한 스트레스를 받는 것으로 분석되었는데 이와 같은 스트레스 조건의 실내에서 재배할 경우 60 μmol m-2 s-1의 저광도 수준에서 재배하는 것이 바람직한 것으로 보인다. 반대로 무늬스킨답서스와 관음죽은 스트레스를 비교적 적게 받는 것으로 나타나 고온과 연속광 조건하에서도 광도의 세기와는 무관하게 양호한 생육이 가능할 것으로 판단된다.
고품질의 아가콩 음료개발을 위해 반응표면분석법에 의한 추출조건을 최적화 하였다. 아가콩 의 최적 볶음조건은 250 ℃, 30분으로 설정하였다. 추출시간, 추출온도에 따른 아가콩의 품질지표인 pH, 색도 및 이소플라본 함량은 1% 이내에서의 유의적인 영향을 미치는 것으로 나타났다. 추출온도와 추출시간이 길어질수록 이소플라본 함량은 높은 것으로 나타났다. 반응표면분석의 이소플라본 추출 공정 최적화 결과 추출온도는 99.5 ℃, 추출시간은 1.7 h으로 나타났으며, 이 조건에서 이소플라본의 최적 수 율은 10.63 μg/mL로 예측되었다.
본 연구에서는 전처리 방법별 건조 단호박의 이화학적 특성을 비교 분석하고 반응표면분석법을 이용하여 단호박 말랭이의 최적 건조 조건을 설정하였다. 단호박의 이취 제거와 가공적성을 위한 건열(굽기), 습열(증자), 마이크로웨 이브 처리의 전처리 방법을 비교하고자 호화 점도를 측정 하여 전처리 시간을 설정하였다. 각 전처리 방법별 열풍 건조 전후의 단호박 품질특성을 비교한 결과, 마이크로웨이브 처리에서 가용성 고형분, 과당, 포도당, 자당 함량이 건열과 습열 처리보다 높았고, 수분 함량, 강도 및 경도가 낮게 나타나 마이크로웨이브 처리를 단호박 열풍 건조를 위한 최적의 전처리 방법으로 설정하였고 반응표면분석법을 이용하여 최적의 열풍 건조 조건을 확인하였다. 반응표면분석은 중심합성 계획법으로 실험을 디자인하여 독립변수로서 건조 온도(30, 40, 50oC, X1)와 건조 시간(4, 6, 8 h, X2)을 설정하고, 종속변수로는 건조 단호박의 수분 함량, 수분활성도, 가용성 고형분, 강도, 경도, 과당, 포도당, 자당 함량, 색도(L*, a*, b*)를 측정하여 건조 조건을 최적화하였다. 최적화 변수로는 적합성 결여 검증에서 Pr> F 값이 0.05 이상인 수분 함량, 수분활성도, 가용성 고형분을 최적화 변수로 설정하였으며, 최적화 결과 43oC의 온도와 7.2시간이 최적 건조 조건으로 확인되었고, 예측값과 실험 값을 비교한 결과 90% 이상의 최적 비율을 보였으며, 해당하는 값이 95% 신뢰구간과 예측구간 범위에 들어 실험 디자인과 모델의 적합성 또한 검증되었다.
One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.
본 연구에서 흰목이버섯의 추출조건별 추출수율과 기능성 성분의 함량을 비교하여 최적 추출조건을 분석하였으며, 모든 분석에서 R²이 0.9331~0.9462로 유의성을 보이는 것을 확인하였다. 각 독립변수에 따른 추출수율과 ergothioneine, β-glucan 성분을 분석한 결과 추출수율은 추출온도와 추출시료농도에 반비례했으며, 추출시간에는 큰 영향이 없었다. Ergothioneine 성분은 온도가 증가할수록 증가하며, 추출시간은 4.33 h가 가장 높았고 시료량에 큰 영향이 없었다. β-glucan 성분은 온도가 증가할수록 감소했으며, 추출시간에 큰 영향이 없었고 시료량이 21.2 mg/mL에서 가장 높았다. 모든 종속변수의 최대 독립변수는 온도 60 o C, 추출시간 4.33 h, 추출시료농도 16.6 mg/mL에서 추출수율 24.9%, ergothioneine 성분함량 66.8 ug/g, β-glucan 성분함량 34.9 g/100 g으로 나타났다.
생강의 기능성 소재화를 위해 흑생강을 제조함에 있어 숙성 조건 최적화를 위한 숙성 온도(75.0~90.0℃, X1)와 시간(18.0~72.0 hr, X2)을 독립변수로 하고 중심합성계획에 따른 11구간의 조건에서 제조된 흑생강의 이화학적 특성 및 항산화 활성을 측정하였다. 흑생강의 수율은 모든 조건에서 60% 이상이었다. 흑생강의 명도와 황색도, 6-shogaol, 총 페놀 및 플라보노이드 함량은 숙성 온도가 높고 시간이 길어질수록 증가되는 경향이었다. 특히 흑생강의 6-shogaol, 총 페놀 함량 및 항산화 활성은 90℃에서 45 hr 숙성 시 최대값을 보였다. 반응표면분석법에 의한 흑생강의 제조 시 예측된 최적 조건은 89.97℃ 및 21.60 시간이었으며, 실측값은 예측값의 92.7~101.6%의 범위였다.
The purpose of this study is to optimize the rice starch and rice protein content ratio for the replacement of fish paste in eomuk using a response surface methodology. The experiment was designed based on the independent variables. The rice starch content (X1: 10, 20, 30%) and rice protein content (X2: 1, 3, 5%) were examined, along with the viscosity (Y1), color (Y2: L, Y3: a, Y4: b), and sensory evaluation of the dough (Y5: Color, Y6: Flavor, Y7: Off flavor, Y8: Taste, Y9: Hardness, Y10: Cohesiveness, Y11: Springiness, Y12: Chewiness, Y13: Overall acceptance), with the results being set as dependent variables. The p value of Y1, Y2, Y5, Y7, Y9, Y10, Y11, Y12, and Y13 showed a level of <0.05 excluding Y6 and Y8. R2 value was high at 0.80-0.95 so that these rice starch and rice protein contents were significantly affected in terms of the quality and sensory preference of eomuk; therefore, the optimal conditions of X1 and X2 were 19.99% and 2.91%, respectively. Under these optimal conditions, the predicted values of acceptance were Y5 (5.44), Y7 (5.36), Y9 (5.22), Y10 (5.46), and Y13 (6.11). These results will be the basis for building a method for obtaining a rice material. Also, they are expected to promote rice consumption through the development of processed foods using rice material.
쌀 소비 촉진과 쌀가공품의 다양화를 위해 쌀가루를 이용한 이소말토올리고당 제조에 대해 연구하였다. 최적 반응 조건을 확립하기 위해서 상업용 효소인 Termamyl 2X, Maltogenase L, Promozyme D2, Fungamyl 800L, Trnasglucosidase L을 사용하였고, 당류는 HPLC-CAD를 이용하여 말토올리고당과 이소말토올리고당을 동시분석하여 제조 조건별로 당의 구성 및 함량을 확인하였다. 액화반응의 최적화 조건을 탐색하기 위해 효소의 농도 (0.025%, 0.05%, 0.075%, 0.1%)와 시간(1 h, 2 h)에 변화를 주어 반응시켰으며, 가수분해 정도를 확인하기 위해 액화액의 환원당 함량을 측정하였다. 그 결과 Termamyl 2X 를 0.075% 첨가하여 2시간 동안 반응하였을 때 환원당 함량이 138.26 g/L로 가장 높았다. 당화·전이반응의 최적화 조건을 확인하기 위해 효소의 종류, 효소농도, 효소반응시간을 달리하여 이소말토올리고 당을 제조하였다. Maltogenase L, Promozyme D2, Transglucosidase L을 동시에 첨가하여 반응시켰을 때 isomaltose와 panose를 많이 생산하면서 총 이소말토올리 고당의 함량이 가장 높게 나타났다. 그리고 효소의 첨가량을 결정하기 위해 각각 농도에 변화를 주어 시간별로 당 함량을 검토하였다. 그 결과, Maltogenase L은 0.0015%, Promozyme D2는 0.05-0.1%, TransglucosidaseL은 0.1%를 첨가하였을 때, glucose의 함량은 감소되고 중합도가 높은 이소말토올리고당의 함량은 증가하는 효과가 있었다. 최적 효소반응시간 결정을 위해 6시간마다 생성물의 변화를 관찰한 결과, 36시간에 총 이소말토올리고당이 75.36 g/L로 가장 높은 것으으로 확인되었다. 최적 조건으로 제조된 이소말토올리고당은 18 brix였고, isomaltose 35.11 g/L, panose 11.97 g/L, isomaltotriose 19.95 g/L, isomaltotetraose 7.46 g/L, isomaltopentaose 1.05 g/L 이 생성되었으며, 총당 중 이소말토올리고당의 비율은 56.37%였다.
억새와 같은 초본계 바이오매스로부터 cellulose, hemicellulose, lignin 등 주요성분을 추출하기 위해서는 알칼리 전처리가 효율적이며, 본 연구에서는 수산화칼륨(KOH)을 이용한 전처리 조건을 최적화하였다. 전처리 변수의 최적화는 반응표면분석법(RSM)을 적용하였다. RSM의 변수는 3개였으며, 변수범위는 각각 KOH 0.2∼0.8M, 반응온도 110∼190℃ 및 반응시간 10∼90min 이었다. 억새의 알칼리 전처리를 위한 최적조건은 KOH 농도 0.47M, 반응온도 134℃ 및 반응시간 65min 이었다. 최적 전 처리 조건에 따라 전처리를 수행한 후 고형물의 cellulose 함량은 66.1±1.1% 이었으며, hemicellulose 및 lignin 함량은 각각 26.4±0.4%, 3.7±0.1% 이었다. RMS 모델식에 따라 계산된 예측값은 실제값 대비 95% 범위 내에서 유효하였다. 최종적으로 전처리물을 동시당화발효를 통해 검증한 결과 에탄올 생산 수율은 96% 이었다.
The purpose of this study was to optimize the rice protein extracted using a response surface methodology. The experiment was designed based on a CCD (Central Composite Design), and the independent variables were the high pressure (X1, 0-400 MPa) and processing time (X2, 0-10 minutes). The results of the extraction content (Y1), residue content (Y2), and recovery yield (Y3) were fitted to a response surface methodology model (R2= 0.92, 0.92, and 0.93, respectively). Increasing the pressure and processing time has a positive effect on the extraction content (Y1), residue content (Y2), and recovery yield (Y3). Therefore, these high-pressure conditions (independent variables) can significantly affect the improvement in rice protein extraction efficiency. Thus, the optimal conditions of X1 and X2 were 400 MPa and 10 min., respectively. Under these optimal conditions, the predicted values of Y1, Y2, and Y3 were 62.93, 57.53 mg/g, and 91.76%, respectively.
The purpose of this study was to optimize the mandarin dry chip manufacturing using a response surface methodology. The experiment was designed based on a CCD (Central Composite Design), and the independent variables were the drying temperature (X1, 50-90oC), drying time (X2, 12-36 hours), and microwave pretreat time (X3, 0-4 minutes). The results of appearance (Y5), color (Y6), taste (Y8) and overall acceptance (Y10) were fitted to the response surface methodology model (R2=0.86, 0.88, 0.89, and 0.84, respectively). Increasing the drying temperature and microwave treatment time were negatively evaluated for consumer acceptance. On the other hand, a high value of consumer acceptance was evaluated when the drying time was more than 24 hr. Therefore, the optimal conditions of X1, X2, and X3 were 52.989oC, 24 hr, and 1 min, respectively. Under these optimal conditions, the predicted values of Y5, Y6, Y8, and Y10 were 5.066, 5.338, 5.063, and 5.339, respectively.
온도상승에 대한 낙엽성 목본식물종의 식물계절반응을 알아보기 위하여 동일지역에서 채종된 종자를 기반으로 야외 (대조구)와 온도가 최저생육온도 (약 4.8℃) 이상으로 유지되는 온실 (처리구)에서 우리나라 주요 낙엽수 39종을 재배하며, 잎의 식물계절변화를 1년 동안 관찰하고. 이를 식물의 현재 분포범위와 관련지어 설명하였다. 잎이 돋는 개엽기는 평균적으로 야외에서 5월 1∼3일이었고, 온실처리구에서는 12월 13일∼1월 7일이었으며, 잎이 지는 낙엽기는 평균적으로 야외에서 10월 11∼26일이었고, 온실에서는 10월 30일∼11월 13일이었다. 이처럼 온도상승으로 개엽기는 119∼140일 빨라졌으며, 낙엽기는 3∼32일 늦춰졌다. 그리고 잎의 생육기간은 야외대조구보다 온실에서 평균 148일 증가하였다. 온도상승조건인 온실에서 재배된 신갈나무와 졸참나무는 1년 동안 낙엽기가 없이 생육기만 지속되는 상록성으로 변하였으며, 또한 팥배나무의 개엽기는 야외보다 빨라졌으나 그 폭은 가장 적었고, 낙엽기는 오히려 앞당겨져 생육기간의 증가폭이 가장 적었다. 그러나 온도상승에 대한 낙엽수 잎의 식물계절학적 반응은 식물의 현재 분포범위와는 연관성이 없었다. 이는 낙엽수 잎의 표현형이 과거의 환경보다 현재의 생육조건에 더 민감하게 반응한 것으로 사료된다.
국내에서 서식처 파괴로 인해 개체 수가 감소되어 층층둥굴레는 준위협종(Near Threatened)으로 지정되었다. 본 연구는 경기도 파주시 갈곡천 하천변에 위치한 층층둥굴레 서식지를 포함한 주변 일대의 토양과 광 특성, 층층둥굴레의 개체군 특성 및 분포 현황 그리고 생활사를 밝혀보고자 한다. 또한 기후변화조건에서 광 구배에 따른 1년생 층층둥굴레 유식물의 생장반응을 알아보기 위해 온실에서 재배 실험을 하였다. 연구 결과, 층층둥굴레의 서식지의 제외지는 밭과 도로이며 제내지는 낚시 등으로 인해 인위적인 간섭이 잦은 곳이었다. 서식지의 표고는 6m, 하천까지 거리는 약 8m로서 우기 때 하천의 범람의 영향을 받았고 토양의 pH 6.8, 깊이별 토양전도도는 10cm가 0.1(±0.05) ds/m, 20cm가 0.2(±0.05) ds/m이고 수분함량은 10.4%, 유기물 함량은 6.3%으로 나타났다. 층층둥굴레군락지내에서 목본식물이 출현하지 않았지만 키가 2m 이상인 침입외래식물 단풍잎돼지풀이 층층둥굴레의 상관을 덮는 것으로 확인되었다. 층층둥굴레의 상관의 광량은 516.1umol, 단풍잎돼지풀이 혼생하는 곳에서 층층둥굴레 상관의 광량은 90.0umol이었다.. 층층둥굴레군락지내에 1m2의 영구 방형구 30개를 설치하여 개체군의 특징을 살펴본 결과, 층층둥굴레의 개체수는 2017년에 약 1,212개체이고 2018년은 약 1,169개체로 약 -3.5% 감소하는 경향이 나타났다. 층층둥굴레의 꽃과 열매는 평균 6층부터 20층까지 형성하고 열매를 맺었고. 한 개체의 평균 꽃수는 2017년에 17.2(±9.5)개, 2018년에 27.0(±16.4)개로 올해에 꽃수가 더 많았다. 하지만 한 개체의 평균 열매수는 2017년에 17.3(±14.0)개, 2018년에 9.2(±8.7)개로 올해에 열매수가 적었다. 영구방형구내에서 층층둥굴레는 가는잎쐐기풀, 단풍잎돼지풀, 애기똥풀 등과 분포하며 층층둥굴레가 가장 높은 피도(41.4%)와 중요치(42.1)를 가졌다. 하지만 조사지역(1521.2m2)에서 층층둥굴레군락의 면적은 작년(30.52m2)에 비하여 올해는 26.1m2로서 감소하는 경향을 보였고 단풍잎돼지풀이 가장 큰 면적(724.2m2)으로 분포하는 것으로 나타났다. 층층둥굴레의 생활사는 4월 초에 지상부 출현과 개엽이 동시에 이루어졌고, 5월 초에 꽃봉오리가 생성하고 말에 개화가 시작되었다. 6월 중부터 열매가 형성하면서 층층둥굴레 아래층부터 잎 갈변이 시작되었고 7월 말부터 열매가 성숙되면서 9월 말에 낙엽과 동시에 생활사가 끝남을 확인하였다. 또한 온실에서 기후변화처리(CO2상승구, CO2상승구+온도상승구, 온실) 조건에서 광 구배(차광막1겹, 차광막 없음)를 통한 유식물의 생장반응 알아본 결과, 지상부 길이는 야외에서 가장 길었고, 차광막이 있는 곳보다 차광막이 없는 곳에서 길었다. 잎 수는 야외에서 가장 적었고 광의 영향은 받지 않았다. 하지만 생존율은 CO2상승구+온도상승구와 차광막이 있는 곳에서 가장 높았다. 연구 결과를 통해, 본 연구지역의 층층둥굴레의 개체군은 인위적인 간섭에 의해 개체 수와 면적이 줄어들고 있는 것으로 평가되며 또한 기후변화가 진행되면 층층둥굴레의 생존율이 높았다. 또한 지속적인 모니터링을 통해 국내의 층층둥굴레 개체군 유지를 위해서는 효과적인 개체 보전 방안을 마련해야된다고 판단된다.